
ZØ: An Optimizing Distributing Zero-Knowledge Compiler

Matthew Fredrikson
University of Wisconsin

Benjamin Livshits
Microsoft Research

Abstract
Traditionally, confidentiality and integrity have been two
desirable design goals that are have been difficult to com-
bine. Zero-Knowledge Proofs of Knowledge (ZKPK) of-
fer a rigorous set of cryptographic mechanisms to bal-
ance these concerns. However, published uses of ZKPK
have been difficult for regular developers to integrate into
their code and, on top of that, have not been demon-
strated to scale as required by most realistic applications.

This paper presents ZØ (pronounced “zee-not”), a
compiler that consumes applications written in C#
into code that automatically produces scalable zero-
knowledge proofs of knowledge, while automatically
splitting applications into distributed multi-tier code. ZØ
builds detailed cost models and uses two existing zero-
knowledge back-ends with varying performance charac-
teristics to select the most efficient translation. Our case
studies have been directly inspired by existing sophisti-
cated widely-deployed commercial products that require
both privacy and integrity. The performance delivered
by ZØ is as much as 40× faster across six complex ap-
plications. We find that when applications are scaled to
real-world settings, existing zero-knowledge compilers
often produce code that fails to run or even compile in a
reasonable amount of time. In these cases, ZØ is the only
solution that is able to provide an application that works
at scale.

1 Introduction
As popular applications rely on personal, privacy-
sensitive information about users, factors such as legal
regulations, industry self-regulation, and a growing body
of privacy-conscious users all pressure developers to re-
spond to demands for privacy. Storing user’s data in
the cloud creates downsides for the application provider,
both immediately and down the road. While policy mea-
sures such as DoNotTrack and anonymous advertising
identifiers become increasingly popular, a recent trend
explored in several research projects has been to move
functionality to the client [14, 18, 39, 42]. Because ex-
ecution happens on the client, such as a mobile device
or even in the browser, this alone provides a degree of
privacy in the computation: only relevant data, if any, is
disclosed (to a server). However, in many cases, moving

functionality to the client conflicts with a need for com-
putational integrity: a malicious client can simply forge
the results of a computation.

Traditionally, confidentiality and integrity have been
two desirable design goals that are have been difficult to
combine. Zero-Knowledge Proofs of Knowledge (ZKPK)
offer a rigorous set of cryptographic mechanisms to bal-
ance these concerns, and recent theoretical developments
suggest that they might translate well into practice. In
the last several years, zero-knowledge approaches have
received a fair bit of attention [24]. The premise of
zero-knowledge computation is its promise of both pri-
vacy and integrity through the mechanism cryptographic
proofs. However, published uses of ZKPK [4, 6, 8, 9,
20, 38] have been difficult for regular developers to in-
tegrate into their code and, on top of that, have not been
demonstrated to scale, as required by most realistic ap-
plications.

Zero-knowledge example: pay as you drive insur-
ance: A frequently mentioned application and a good
example of where zero-knowledge techniques excel is
the practice of mileage metering to bill for car insur-
ance: pay as you drive auto insurance is an emerging
scheme that involves paying a rate proportional to the
number of miles driven, either linearly, or using several
billing brackets [5, 40, 43]. Of course, given that the
insurance company knows much about the customer, in-
cluding their address, if daily mileage data is provided,
much can be inferred about user’s daily activities, where
they shop, etc. [16, 31, 32]. The user in this scheme
performs a calculation on their own data, but of course
the insurance company wants to prevent cheating. Zero-
knowledge proofs provide a way to ensure both privacy
and integrity, which involves performing the billing com-
putation on the user’s hardware (on the client), perhaps,
monthly, and providing the insurance company with 1)
the final bill and 2) a proof of correctness of the account-
ing calculation, which can be verified by the insurance
company (on the server) [4, 19, 37, 41].

What we did: In this paper, we present ZØ, a com-
piler that consumes applications written in a subset of C#
into code that produces scalable zero-knowledge proofs
of knowledge, while automatically splitting applications
into distributed code, to be executed on two (or more)

1

1 INTRODUCTION

execution tiers. We are building on very recent develop-
ments in zero-knowledge cryptographic techniques [17,
33], exposing to the developer the ability to take advan-
tage of these advances. ZØ builds detailed cost models
of the code regions that require ZKPK, and uses exist-
ing zero-knowledge back-ends with varying performance
characteristics to select the most efficient translation, by
formulating and solving constrained numeric optimiza-
tion problems. Our cost modeling takes advantage of the
strengths of both back-ends, while avoiding their weak-
nesses, both for local and global (distributed) optimiza-
tion. Using a set of realistic applications that perform
tasks such as distributed data mining and crowd-sourced
data aggregation, we demonstrate ZØ’s ability to produce
privacy-preserving code which runs significantly faster
than previously possible.

High-level goals: ZØ aims to provide an attractive com-
bination of high-level goals of privacy, integrity, expres-
siveness, and performance. While the first two goals
are achieved through the use of zero-knowledge, to sup-
port ease of programming and expressiveness, ZØ ac-
cepts (a subset of) C#, a widely-used general purpose
language as input that can run in many settings. Of
course, we are not tied to C# and could support an-
other high-level language such as JavaScript, Java, or
C++. Our use of a general-purpose language allows de-
velopers to include hundreds or thousands of lines of C#
or other .NET code, allowing the construction of full-
featured GUI-based distributed applications that support
zero-knowledge instead of small examples written in a
domain-specific language.

To enable distributed programming wherever .NET
code can run, ZØ supports automatic tier-splitting, in-
spired by distributing compilers such as GWT [21] and
Volta [26]. We primarily target client-server computa-
tions (two tiers), although other options such as P2P are
also supported by ZØ. Code produced by ZØ can be run
on desktops, in the cloud, on mobile devices (Windows
Phone) and on the web (Silverlight).

Applications: Much of the inspiration for ZØ came
from our desire to be able to use ZKPK techniques to
build applications directly analogous to some widely-
deployed commercial products, as opposed to toy bench-
marks. In our studies detailed in Section 6, we show
how they can be (re-)built in a privacy- and integrity-
preserving way. For example, our FitBit study was in-
spired by wireless activity tracking devices manufactured
by FitBit (fitbit.com) and Earndit (earndit.com).
The Slice study was inspired by purchase tracking soft-
ware from Slice, Inc. (slice.com). The study Waze app
was inspired by Waze, a popular crowd-sourced, real-
time traffic app for mobile platforms (waze.com).

Contributions: We make these contributions:

• This paper proposes ZØ, a distributing compiler that
allows developers to create highly performant, large
distributed applications, while preserving both privacy
and integrity. ZØ uses precisely calibrated cost mod-
els to choose which underlying zero-knowledge back-
end to employ. Based on the cost model, ZØ statically
determines the appropriate splitting perimeter for the
application to achieve best performance and rewrites
it to be run on multiple tiers.

• Developer: ZØ is designed to be easily accessi-
ble to a regular developer; to this end, we expose
zero-knowledge functionality via LINQ, language-
integrated-queries built into .NET. We demonstrate the
expressiveness of the ZØ approach by developing six
case studies directly inspired by commercial appli-
cations which we hope will become benchmarks for
zero-knowledge tools, ranging from personal fitness
tracking (Fitbit) to crowd-sourced traffic-based rout-
ing (Waze), to personalized shopping scenarios.

• Cost modeling: We develop cost models for the indi-
vidual back-ends, allowing us to perform global cross-
tier optimizations. Our cost-fitting models provide
an excellent match with the observed performance,
with R2 scores between .98 and .99.

• Speedup: We evaluate ZØ on six complex real-life
large-scale applications of zero knowledge, focusing
on latency and throughput of zero-knowledge tasks.
Our global optimizer is fast, completing in under 3
seconds on all programs. ZØ produces code that
achieves as much as 40× speedups compared to state-
of-the art zero-knowledge systems. We also find that
ZØ is able to effectively optimize across tiers in a
distributed application: while the code it generates
may be slower on one tier (we observed one case that
was 2× slower for the server), the savings at other tiers
are always greater (the same cases, 4× faster on the
client).

• Scale: At scale, existing zero-knowledge compilers
often produce code that fails to run in a reasonable
amount of time, or exhaust system resources during
compilation. In these cases, ZØ is the only solution
that is able to provide a working application.

Paper Organization: The rest of the paper is organized
as follows. Section 2 provides motivating examples and
some background on zero-knowledge. Section 3 gives
an overview of the ZØ approach. Section 5 describes
the ZØ compiler implementation. Section 4 talks about
cost models and both local and global optimizations ZØ
performs. Section 5 describes ZØ implementation. Sec-
tion 6 presents six case studies. Section 7 describes our
experimental evaluation. Related work is discussed in
Section 8 and Section 9 concludes. The Appendix in

MSR-TR-2014-27 2 February 28, 2014

2 BACKGROUND 2.1 Example: Retail Loyalty Card

this paper collects additional data and results that we ex-
tracted from a longer technical report. We avoided self-
citing the technical report to preserve anonymity. Sec-
tion A presents extra information about our six applica-
tions. Section B covers translating LINQ to zero knowl-
edge. Finally, Section C gives some extra details on con-
strain generation for optimization and other details on
our global optimizer.

2 Background
To explain the goals of ZØ concretely, we will demon-
strate its functionality on a smartphone application with
conflicting privacy and integrity needs.

2.1 Example: Retail Loyalty Card

Figure 1 shows the ZØ code for a personalized retail loy-
alty card mobile app, with functionality similar to Safe-
way’s “Just for U” application or Walgreens’ iOS appli-
cation. Each time the customer reaches the check-out
line, this application interacts with the retail terminal in
a bi-directional exchange of information. The exchange
takes place using the phone’s built-in NFC sensor.

First, the application sends a discount claim to the re-
tail terminal, pertaining to the items the customer is about
to purchase. This discount is computed based on the
customer’s previous purchases, using personalization to
provide enhanced value and incentive for the customer.
Zero-knowledge proofs are supplied to ensure the pri-
vacy of the customer’s shopping history, without sacri-
ficing the trustworthiness of their discount claim.

Second, the terminal sends a list of purchases to the
client, corresponding to the current check-out transac-
tion. This list, along with the customer’s other previous
purchases, will be stored in a client-side database used to
compute a discount the next time the user shops with this
retailer.

Application Code: Figure 1 contains C# code for com-
puting the core functionality of this application: using
the customer’s purchase history to produce a discount,
and sending that discount to the retail terminal. It is
important to notice that this is standard C#, capable of
seamless incorporation into larger bodies of C# code. In
fact, ZØ extends the standard C# compiler, and only ap-
plies specialized reasoning to classes that inherit from
ZØ’s DistributedRuntime class. All of the UI and ex-
ternal library code can remain in the application, without
affecting the performance and functionality of ZØ. This
allows ZØ to scale to large applications with arbitrary
legacy dependencies, provided that the sections requiring
zero-knowledge reasoning are localized and moderate in
size. Several important points bear mentioning.

First, of the four functions, two of them, which
we call worker functions, contain location annotations:
GetDiscounts is constrained to execute on the client

1 public class LoyaltyCard : DistributedRuntime
2 {
3 // Local variable declarations
4 [Location(Client)] IEnumerable <int > shophist;
5 [Location(Client)] IEnumerable <int > items;
6 IEnumerable <Triple > automaton;
7 IEnumerable <Pair > transducer;
8

9 public void Initialize(string [] args)
10 {...}
11

12 public void DoWork(string [] args)
13 {
14 var discount =
15 GetDiscounts(shophist , items ,
16 automata , transducer);
17 ApplyDiscount(discount);
18 }
19

20 [Location(Client)]
21 IEnumerable <Pair > GetDiscounts(
22 [MaxSize(Purchases)] IEnumerable <int > history ,
23 [MaxSize(Items)] IEnumerable <int > items ,
24 [MaxSize(Edges)] IEnumerable <Triple > automata ,
25 [MaxSize(States)] IEnumerable <Pair > transducer)
26 {
27 ZeroKnowledgeBegin ();
28 // Check that the history is in ascending order
29 var historyAscendingCheck = history.Aggregate(
30 0,
31 (last , curel) => check(last <= curel));
32 // Get the "discount state"
33 var purch_state = history.Aggregate(
34 0,
35 (state , purch) =>
36 automaton.First(
37 trans => (trans.fld(1) == state) &&
38 (trans.fld(2) == purch)).
39 fld (3));
40 var discount = history.Aggregate(
41 new Pair(purch_state , 0),
42 (state , purch) =>
43 new Pair(
44 // Get the next automata state
45 automata.First(
46 trans => (trans.fld(1) == state.fld (1))
47 && (trans.fld(2) == purch)).
48 fld(3),
49 // Total the current state discount
50 state.fld(2) + transducer.First(
51 edge => edge.fld(1) == state.fld (1)));
52 ZeroKnowledgeEnd ();
53

54 return new IEnumerable <Pair >(discount);
55 }
56

57 [Location(External)] void ApplyDiscount (...)
58 {...}
59 }

Figure 1: Running example application: a personalized retail loyalty
card.

(e.g., the user’s smartphone), and ApplyDiscount to
External (e.g., the retail terminal). ZØ generates sep-
arate object code for each of these locations, and inserts
code to handle the network transfer and data marshalling
for any dependencies between these two functions. In or-
der to streamline the code generated by ZØ, the worker
functions must always return void or IEnumerable ob-
jects, which ZØ’s underlying runtime is optimized to
quickly marshall and transfer.

Second, the target functionality is computed from the

MSR-TR-2014-27 3 February 28, 2014

2 BACKGROUND 2.2 Zero-Knowledge Back-ends

❶

❷ signed purchase transaction

discount claim + ZKPK

transcations

100

Figure 2: Personalized loyalty card application.

main function DoWork, which is called after Initialize.
Initialize gives the application an opportunity to pre-
pare the class’s local state by reading sensors, buffering
data, etc., and can contain arbitrary C# code. DoWork
is more constrained: it can contain a sequence of calls
to worker functions, with no intermediate local compu-
tations, branching statements, or loop statements. This
allows ZØ to efficiently compute the dependencies be-
tween different tiers. In this case, ZØ determines that the
return value of GetDiscounts (computed on the smart-
phone) is always used by ApplyDiscount (computed on
the retail terminal), and inserts code to package and send,
or receive and unpack, the necessary data as well as any
accompanying zero-knowledge proofs.

Third, the main code is located in GetDiscounts,
which takes a list of the user’s previous purchases
(history), the user’s current check-out items (items),
and a finite-state transducer (automata and transducer),
and produces a discount dollar value for transfer to the
retail terminal. The transducer is produced by the re-
tailer, and is designed to associate past purchases to items
that the customer may be interested in buying in the fu-
ture; the details of designing the transducer are beyond
the scope of this work. GetDiscounts begins by check-
ing that the purchases are given in ascending order, by
their ID numbers; this is a simple optimization that al-
lows the retailer to minimize the size of the transducer.
This check is performed using LINQ’s Aggregate oper-
ator, and ZØ’s check function, which behaves like an
assertion. It then proceeds to traverse the transducer’s
finite-state machine using the customer’s shopping his-
tory, effectively loading the history into the transducer’s
memory in preparation for emitting discount values.

Finally, the customer’s current items are processed by
traversing the finite-state machine, starting in the final
state of the previous traversal, and summing the output
of the transducer relation. The final sum is returned to
DoWork as a discount claim.

Zero-knowledge: The entirety of GetDiscounts is
computed in zero-knowledge, as indicated by the
ZeroKnoweldgeBegin() and ZeroKnowledgeEnd() annota-
tions. Notice that each statement of this method con-
sists of a LINQ query, giving the computation an overall
functional form, without using language features such as

references, loops, or conditionals. This is necessary to
accommodate faithful translation into code that produces
zero-knowledge proofs using the zero-knowledge back-
ends discussed in Section 2.2. However, the programmer
is still able to express computations in this fragment of
standard C#, without dealing with the overhead of inter-
language binding between the engines and the main pro-
gram, and without needing to learn the different input
languages understood by each engine.

Finally, a few subtle details of this code bear mention-
ing. Two of the class variable declarations, shophist
and items, have location annotations that tell ZØ that
they should not leave the customer’s smartphone with-
out first being processed by zero-knowledge code. This
gives the programmer an extra degree of assurance of
the code’s privacy properties, letting her treat the zero-
knowledge code regions like declassifiers with additional
integrity guarantees. Finally, notice that the parameters
to GetDiscounts contain MaxSize attribute annotations.
These optional size annotations allow the ZØ compiler
to do precise cost modeling, as explained in Section 4.

2.2 Zero-Knowledge Back-ends

ZØ relies on two zero-knowledge back-ends, Pinoc-
chio [33] and ZQL [17], to produce code that balances
privacy and integrity. Each of these back-ends takes an
expression, in the form of executable code in a high-level
source language, and produces object code that computes
the expression over dynamically-provided inputs while
building zero-knowledge proofs for the expression on the
given input. These engines have very different character-
istics that affect performance and usability in different
ways, which we outline here.
Pinocchio: Pinocchio utilizes a novel underlying com-
putation model, Quadratic Arithmetic Polynomials, to
evaluate an expression and produce zero-knowledge
proofs [33]. For some computations, it yields perfor-
mance gains several orders of magnitude beyond pre-
vious systems that gave similar functionality, producing
proofs of a constant size regardless of the size or struc-
ture of the target expression.

The expression language supported by Pinocchio is a
strict subset of C, and the object created for evaluation is
an arithmetic circuit [33]. The fact that the target circuit
must be finite, and cannot encode side-effects, imposes
necessary conditions on the parts of C that are available.
Loops and conditionals are “unrolled” during compila-
tion, so all loops must have static bounds. Likewise,
pointers and array indices must be compile-time con-
stants, or simple loop variables (as these are unrolled),
thus simplifying cost modeling. For this paper we used a
publicly released version of Pinoccio 0.4 obtained from
the public distribution1.

1https://vc.codeplex.com/downloads/get/714129

MSR-TR-2014-27 4 February 28, 2014

3 OVERVIEW

60*expOp + 1800*expOp +
2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
30*mltEOp + 900*mltEOp +
2*sigSignOp

900*eqOp + expOp + 60*expOp +
6300*expOp + extendOp +
60*extendOp + 4500*extendOp +
60*extendOp + 30*mltEOp +
60*mltOp + 60*subOp +
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp +
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp +
9900*expOp + extendOp +
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
60*mltEOp + 3600*invEOp +
6300*mltEOp + 900*mltOp +
1800*sIntNumOp + 900*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

60*expOp + 1800*expOp +
2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
30*mltEOp + 900*mltEOp +
2*sigSignOp

900*eqOp + expOp + 60*expOp +
6300*expOp + extendOp +
60*extendOp + 4500*extendOp +
60*extendOp + 30*mltEOp +
60*mltOp + 60*subOp +
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp +
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp +
9900*expOp + extendOp +
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
60*mltEOp + 3600*invEOp +
6300*mltEOp + 900*mltOp +
1800*sIntNumOp + 900*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

1) Input is supplied as C# code, containing a
mix of ZK blocks are regular blocks.

2) Cost modes for ZQL and Pinoccio are used
to decide ZK runtime costs.

3) Appropriate ZK translation are generated
in .NET IL.

4) Final .NET DLLs are produced for each tier

Ti
er

 s
p

ec
if

ic
at

io
n

Ze
ro
-

kn
o
w
le
dg
e

30*expOp + 450*expOp +
2*hashOp + 15*hashOp +
225*hashOp + 15*hashOp +
15*mltEOp + 225*mltEOp +
2*sigSignOp

225*eqOp + expOp + 30*expOp +
1575*expOp + extendOp +
30*extendOp + 1125*extendOp +
30*extendOp + 15*mltEOp +
30*mltOp + 30*subOp +
675*invEOp + 900*mltEOp +
1350*mltOp + 225*sIntNumOp +
900*subOp + 6*sIntNumOp

eqOp + 3*expOp + 45*expOp +
2475*expOp + extendOp +
15*extendOp + 675*extendOp +
2*hashOp + 15*hashOp +
225*hashOp + 15*hashOp +
30*mltEOp + 900*invEOp +
1575*mltEOp + 225*mltOp +
450*sIntNumOp + 225*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

(fold
(fun (acc,i) ! ((let (_1, _2)
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in
_2)))
(1, 1) inputNums)

(fold
(fun (acc,i) ! ((let (_1, _2)
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in
_2)))
(1, 1) inputNums)

Tier 1

Tier 2

Tier 1

Ze
ro

-k
n

o
w

le
d

g
e

co
d

e
 t

ra
n

sl
a

te
d

Figure 3: ZØ architecture.

ZQL: ZQL utilizes several fairly recent advances in the
theory of zero-knowledge proofs to produce efficient ver-
ified private code that operates over functional lists [17].
The underlying cryptographic machinery used by ZQL
is more traditional than that of Pinocchio, relying heav-
ily on homomorphic commitment schemes to provide its
guarantees. The expression language supported by ZQL
is a simple functional language without side effects, and
limited operator support. In a nutshell, ZQL supports
map and fold operations, as well as find operations over
tuples of integers. Boolean expressions can only be used
inside of find operations, and are currently limited to con-
junctions of equality tests; all forms of inequality are not
explicitly supported, although the authors plan to sup-
port these operations in future versions. In terms of arith-
metic, addition, subtraction, and multiplication are sup-
ported. Finally, multiple operations can be sequenced us-
ing classic functional let bindings. Although these con-
structs might seem modest at first blush, the ability to
perform table lookups using find allows for the evaluation
of logic gates, and the list-based map and fold operations
place no upper-bound on the size of the program’s input,
as in the case of Pinocchio. We obtained a version of
ZQL from its authors.

3 Overview
Figure 3 shows the architecture of the ZØ compiler. The
developer provides as input a set of C# source files,
which may include arbitrary regions of legacy and li-
brary code as well as functionality targeted towards zero-
knowledge proof generation. ZØ then enters a cost mod-
eling stage, analyzing the zero-knowledge regions, build-
ing performance models that characterize the cost of pro-
viding zero-knowledge proof generatiion and verification
code for each available zero-knowledge back-end. These
models take the form of polynomials over the size of the
input data to the zero-knowledge region in the original
C# application. ZØ then compares the models to deter-

mine which engine the application should use for each
C# statement in the region, and translates the C# code
(depicted in the zero-knowledge translation stage of Fig-
ure 3) into expressions understood by the appropriate
zero-knowledge engine. In the final output stage (Fig-
ure 3), ZØ decides how to split the application across
tiers to maximize performance, given privacy annota-
tions as well as relative costs for transmitting data and
computing at each tier.

This translation yields a separate module which is
callable from the original application, either as an
arithmetic circuit (Pinocchio) or standard .NET byte-
code (ZQL). Finally, ZØ partitions the original C# code,
along with the zero-knowledge modules compiled in the
previous step, into multiple applications to run at each
service tier. During partitioning, ZØ inserts code to per-
form communication, synchronization, data marshaling,
and zero-knowledge proof transfer in parallel to the orig-
inal application code. The resulting modules are standard
.NET bytecode that can be run on the proper tiers without
the need for additional specialized software.

Optimization & cost models: Even apparently straight-
forward applications like the personalized loyalty card
app discussed in Section 2.1 contain subtle character-
istics that might make zero-knowledge proof genera-
tion expensive. It is often the case that one zero-
knowledge engine offers significantly better performance
for a particular statement, and selecting the appropri-
ate engine for each computation in the zero-knowledge
region means the difference between a scalable, low-
latency implementation and one that requires hours or
days to execute.

For the loyalty card application in Figure 1, it turns
out that the inequality comparisons are better handled by
Pinocchio, whereas the table lookups needed to execute
the transducer are very inexpensive when performed by
ZQL. A comparison of the times to perform the opera-

MSR-TR-2014-27 5 February 28, 2014

4 COST MODELS & OPTIMIZATIONS

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

Process	 a	 GPS	 Reading	

Apply	 discount	

Redeem	 workout	

Z0	
Pinocchio	
ZQL	

Figure 4: Comparison of times for several applications.

tion on the y-axis for several applications from Section 6
is shown in Figure 4. We can see dramatic differences
in performance between the back-ends, with the ZØ ap-
proach out-performing either of the two back-ends. ZØ
addresses these performance differences by building de-
tailed performance models for each statement in the zero-
knowledge region.

Distributed configuration: To support a variety of dis-
tributed scenarios, ZØ allows the developer to place
code on several different tiers, which are specified us-
ing the following tier labels: Client (end-user’s primary
device), External (provider’s servers), ClientShare (peer-to-
peer nodes), and ClientResource (additional hosts owned by
end-user). Tiers impose data confidentiality and integrity
constraints, as ZØ makes assumptions about the trust re-
lationships between tiers.

The figure in this paragraph shows these relationships;

C CS CR E

C
CS
CR
E

white cells indicate trust,
and gray the opposite. At
compile time, the user can
modify the configuration by
specifying weights on each
tier label indicating the relative cost of computation at
that tier, as well as the cost of communication between
tiers. ZØ uses these weights during optimization to de-
termine the best placement of code and data amongst the
tiers. Data privacy constraints are given by the program-
mer by marking certain variables as private to a particu-
lar tier using the attribute [Private(TL)], where TL specifies
the tier to which the data is considered private (e.g., Client,
External, . . .).

Note that by design, these annotations are lightweight:
they are only needed on (the few) variables that must be
kept confidential. Most can be declared without any an-
notations at all.

When ZØ compiles the application and runs a global
optimization described in Section 4.2 to place each
worker method on a specific tier, privacy annotations are
used in part to determine on which tiers a method may
reside. These constraints are hard, meaning that a pri-
vacy annotation that requires a less performant compila-
tion configuration will always be respected; if the pri-
vacy constraints conflict with each other, then compi-
lation will not terminate early. Privacy annotations are

propagated transitively using a local dataflow analysis,
so that dependent variables have matching annotations.

Threat model: Because of its reliance on zero-
knowledge back-ends, ZØ makes all of the assumptions
needed for security by ZQL [17] and Pinocchio [33]. The
result of ZØ compilation will be executed on one or more
tiers. Privacy is violated when the trust relationships
given in the previous section are violated. We assume
that tiers cannot learn information by means other than
direct communication, i.e. Server cannot obtain the list of
purchases through side channels, for instance, unless it is
directly shared by Client. Our applications that use secret
sharing (Waze and Slice in Section 6) also assume that
P2P clients do not collude.

4 Cost Models & Optimizations
This section discusses ZØ’s cost modeling approach to
optimizing zero-knowledge computations. As outlined
in Section 3, in many cases one zero-knowledge engine
will outperform the other on a particular computation by
a significant factor, giving ZØ a key opportunity to opti-
mize the code it produces. ZØ optimizes zero-knowledge
regions by building detailed performance models that
characterize the cost of building and verifying zero-
knowledge proofs in each engine. We are able to accom-
plish this with reasonable accuracy because the execution
depth of zero-knowledge regions is statically-bounded (a
necessary condition imposed by the underlying engines),
and the evaluation of zero-knowledge code universally
relies on a few primitive operations. This allows ZØ to
build static cost models as polynomials over the number
of primitive operations each region must execute.

Section 4.1 discusses local optimizations within a
given zero-knowledge region to decide which back-end
to use. Section 4.2 proposes a split for the entire applica-
tion designed for maximal performance.

4.1 Local Optimization

In order to build cost models for ZQL code, we execute
the F# “object code” generated by ZQL’s compiler sym-
bolically. Symbolic data is represented by polynomials
that characterize the size of the corresponding concrete
data, or structured sets of polynomials in the case of
structured data types. The symbolic operation for each
ZQL operation accumulates terms on a polynomial that
characterize the cost of that operation in terms of the size
of its input data, and returns a new polynomial that char-
acterizes the cost of producing of the result. Because
the execution depth of iteration commands is always a
polynomial function of the size of the inputs, and ZQL
programs do not contain branching, accumulating a cost
polynomial by symbolic execution necessarily accounts
for all of the operations contained in a ZQL program.

Recall that Pinocchio compiles C code into a circuit,

MSR-TR-2014-27 6 February 28, 2014

4 COST MODELS & OPTIMIZATIONS 4.2 Global Optimization

ZQL Pinocchio
Setup Prover Verif. Keygen Prover Verif.

FitBit 0.01 1.81 0.10 0.39 0.20 0.00
Waze 0.11 0.29 0.25 0.04 0.02 0.00
Loyalty 0.03 0.35 0.11 0.31 0.20 0.00
Slice 0.06 0.41 0.32 0.05 0.03 0.00
Average 0.05 0.72 0.20 0.20 0.11 0.00

Figure 5: Absolute regression error (in seconds) for selected applica-
tions.

which is evaluated by a specialized runtime to produce
and verify zero-knowledge proofs. The Pinocchio run-
time executes roughly the same code to evaluate every
circuit, varying only on the number of times each opera-
tion is executed to handle every element of each input list
and every operation in the circuit. We build a set of static
polynomials that characterize the execution time of the
runtime in terms of the size of the input circuit, i.e., the
number of I/O wires and multiplication gates it contains.
For example, the cost of the verification stage is given by
the polynomial:

ExpMulB × NInputs + 12 × Pair + VerifyConst

In this polynomial, ExpMulB corresponds to the amount
of time taken to complete a multi-Exponentiation on the
Pinocchio’s base elliptic curve, NInputs to the number
of input wires in the circuit, Pair to the field pairing
cost [33], and VerifyConst to a fixed setup cost for the
verification stage. Similar polynomials are derived for
the key generation and computation stages of Pinocchio’s
runtime.

We use least-squares regression to derive coefficients
for all models except those for Pinocchio’s compute-
stage model, which contains a non-linear term cor-
responding to the O(n · log2n) runtime of polyno-
mial interpolation. To cope with the non-linearity in
Pinocchio’s compute-stage model, we use the Gauss-
Newton method [35] with at most 1,000 iterations and
a randomly-chosen starting point.

Cost-fitting results: To derive the necessary coefficients
for our models, we built a regression training applica-
tion in ZØ consisting of several basic operations likely
to appear in zero-knowledge applications. The training
application takes as input a list of integers, and computes
an aggregate sum, scalar product, second-degree polyno-
mial, boolean mapping, and table lookup on the list. We
compiled this application to use both all-ZQL and all-
Pinocchio zero knowledge computations, and ran it ten
times for each zero-knowledge engine using a fixed list
size (n = 100). We performed regression to learn coeffi-
cients corresponding to the execution time of each primi-
tive operation appearing in the cost model. We then com-
piled a representative subset of the applications described
in Section 6 to use either all-ZQL or all-Pinocchio zero-

knowledge computations, executed each zero-knowledge
region ten times, and recorded the deviation between
execution time predicted by the regression-trained cost
models and the mean execution time observed over all
experiments for a given application. Figure 5 presents
the prediction error of the trained cost models in terms
of the total zero-knowledge execution time in seconds.
Note that the models derived for Pinocchio are gener-
ally more accurate in terms of relative error than those
for ZQL, but the error in both cases is quite small: the
greatest Pinocchio error is 0.39 seconds (on FitBit’s key
generation routine), while the greatest ZQL error is 1.81
seconds (on FitBit’s prover routine). The coefficient
of determination (R2) for each performance model is at
least 0.98, indicating a precise fit of the models to the
execution time.

Summary: To summarize, ZØ is able to build perfor-
mance models of zero-knowledge regions that predict ac-
tual execution time within tenths of a second in most
cases, which provides ample accuracy to make a cor-
rect decision when selecting zero-knowledge engines at
compile-time.

4.2 Global Optimization

ZØ builds cost polynomials to characterize the expense
of each zero-knowledge operation in the target appli-
cation. However, selecting the least expensive engine
for each operation is oftentimes not as straightforward
as evaluating each polynomial at a target input size and
choosing the engine corresponding to the lesser value —
it may be the case that a less expensive operation on the
prover’s side requires a more expensive operation on the
verifier’s side, and depending on the application compu-
tation may be more expensive for the verifier. Alterna-
tively, there may be several ways to partition an applica-
tion between tiers while preserving the privacy of vari-
ables at each tier, with each partition yielding a different
trade-off between computation and communication cost.
To address these concerns, ZØ performs global optimiza-
tion on the application to balance the cost of computation
and communication among differentiated tiers. More de-
tails of the global optimization engine are given in Ap-
pendix C.

Performance of global optimization: We implemented
our global optimization algorithm as part of the ZØ com-
piler. We use CCI2 to traverse the AST of the target code,
and our cost modeler to generate the objective function.

To perform the constrained optimization needed to
find an optimal solution, we used the Nelder-Mead
method [35] with at most 100 iterations. We looked for
integer solutions over the full space of possible tier split-
tings.

The results are presented in Figure 6. Each
application resulted in between 30 and 300 con-

MSR-TR-2014-27 7 February 28, 2014

5 IMPLEMENTATION

Se
rv
e
r

C
lie
n
t

P Z P P

GetGPS Preprocess ComputeDistance ComputeBalances UpdateDB
Se

rv
e

r
C

lie
n

t

P

GenQuery Preprocess MakeShares Aggregate Shares Gen Forest

P P Z P P P

Figure 7: Splits produced by global ZØ optimizations, for FitBit and
Slice. For each phase of the computation, grey cells indicate computa-
tion location (or tier) chosen by the optimizer, with P and Z denoting
ZQL and Pinocchio back-ends, respectively.

straints, and the constraint solver found an optimal
solution in under three seconds for all applications.

Constr. Time

FitBit 179 1.50
Loyalty 38 0.01
Waze 263 2.65
Sice 230 2.14

Figure 6: Global opti-
mization performance,
showing solver time in
seconds for the bench-
marks in Section 6.

Because Nelder-Mead is an ap-
proximate numerical optimiza-
tion algorithm, it is possible that
it would return a local minimum.

However, we checked the so-
lution returned for each applica-
tion, and verified that it corre-
sponded to the true global mini-
mum. Figure 7 shows examples
of ZØ-computed global splits for
two representative applications.

5 Implementation
In order to make privacy analysis, zero-knowledge trans-
lation, and aggressive optimization feasible for the pro-
grammer, ZØ supports a subset of C# that includes cer-
tain LINQ (language integrated queries [36]) functional-
ity and support for external code. To ensure that the ex-
ternal code does not interfere with the privacy, integrity,
and optimization goals of ZØ, the contexts in which it is
allowed are limited in some cases. The syntax accepted
by ZØ is summarized in Figure 8.

The main program is structured into three parts: an
initialization routine (InitBlock, contained in a method
Initialize), the main body (MainBlock, contained in a
method DoWork), and the worker methods (MethodDef).
The initialization routine may consist of a sequence of
arbitrary C# assignment statements, including calls to
methods in external libraries not written in ZØ’s input
language. The main block consists of a sequence of
method calls, assignment statements, and sleep state-
ments. Each method call in the main body must be to
a worker method defined in the ZØ application.

Zero-knowledge regions: The body of each worker

Main program definition
Program ::= InitBlock MainBlock MethodDef∗TypeDef∗

InitBlock ::= CSMethodSig VarDecl∗

MainBlock ::= CSMethodSig WorkerStmt+

MethodDef ::= CSMethodSig (ExternCall | LinqStmt)+

TypeDef ::= class Id { CSFieldDef + }

CSMethodSig ::= PrivacyAnnot CSType Id(. . .){ . . . }
Statements
WorkerStmt ::= SleepStmt | CallStmt | ZKAnnot
SleepStmt ::= WorkerSleep(Integer, Integer, Integer)
CallStmt ::= (Id =)? MethodCall
ExternCall ::= return External.Id“(”Id∗“)”
LinqStmt ::= (Id =)? LinqExpr
VarDecl ::= (PrivacyAnnot | SizeAnnot)? Id(= CSExpr)?

Expressions
Lambda ::= “(”Id∗“)” ⇒ LambdaExpr
LambdaExpr ::= MethodCall | ArithOrBoolExpr

| FieldExpr | NewObj
LinqExpr ::= LambdaLinqExpr | ZipLinqExpr
LambdaLinqExpr ::= Id.LambdaLinqId(Lambda)
LambdaLinqId ::= Select | Aggregate | First
ZipLinqExpr ::= Id.Zip(Id, NewAnonObj)
MethodCall ::= Id “(”LambdaExpr∗“)”
NewObj ::= NewAnonObj | NewStaticObj
NewAnonObj ::= new {(Id = LambdaExpr)+}

NewStaticObj ::= new MethodCall
FieldExpr ::= Id.fld〈Type〉(Int)

Annotations
ZKAnnotat ::= ZeroKnowledgeBegin()

| ZeroKnowledgeEnd()
PrivacyAnnot ::= [Private(TL)]
SizeAnnot ::= [MaximumInputSize(Int+)]

Figure 8: BNF syntax for the subset of C# supported by ZØ. Entities
prefixed with CS correspond to the corresponding C# syntax entity.

method can contain calls to external methods, standard
C# arithmetic and Boolean operations, and a subset of
the standard LINQ data processing operations. Regions
comprised of LINQ operations can be converted into
zero-knowledge proof-generating object code using ei-
ther available zero-knowledge engine (ZQL or Pinoc-
chio). The supported LINQ operations include Select, Ag-

gregate, First, and Zip. Select provides the ability to project
the data in one list into a new list, while performing
arithmetic and Boolean operations on each item in the
original source list. Aggregate provides the ability to com-
pute iterated functions over a list, maintaining an order-
sensitive state through the iteration, which is eventu-
ally returned as the result of the operation. First pro-
vides the ability to perform searches over lists, using a
programmer-defined predicate to determine which ele-
ment of the list to match. Finally, Zip provides the abil-
ity to combine multiple lists, applying arithmetic and
Boolean operations to each pair of items from the origi-
nal source lists.

Zero-knowledge regions are specified by the program-
mer using a pair of methods ZeroKnowledgeBegin and Ze-

roKnowledgeEnd. Because zero-knowledge computations

MSR-TR-2014-27 8 February 28, 2014

6 MOTIVATING CASE STUDIES

provide both integrity and privacy, these annotations
serve a dual purpose. First, the programmer is denot-
ing that the variables which are live [1] at the end of a
zero-knowledge region are trusted across all tiers: the
values have accompanying proofs that any tier can exam-
ine to verify that the computations in the zero-knowledge
region are performed correctly. Second, these regions
serve to declassify private values that are used as in-
puts to a zero-knowledge region; this is in line with
the approach taken by ZQL [17]. Because the inputs to
zero-knowledge regions are kept private, except in cases
where the computations are in some way invertible, the
output values that depend on these inputs are considered
public to all tiers.

Formal reasoning about composing proofs obtained
from different zero-knowledge back-ends remains an av-
enue for future work. Because this work involves ex-
perimentation with very recent cryptographic tools, we
are not aware of a readily-available composition theorem
that would support reasoning about Pinocchio and ZQL.
Code splitting: ZØ partitions the given target appli-
cation into code that runs on multiple tiers, inserting
marshalling and synchronization code [21, 26] as nec-
essary to ensure that the compiled functionality matches
that specified in the original input program. The rewrite
process is implemented as a bytecode-to-bytecode trans-
formation within the CCI 2 rewriting framework for
.NET [29]. We assume that the target tier for each
method is provided as input to the compiler by the op-
timizer, as described in Section 4.2.

Code partitioning between tiers takes place at method
granularity, and data partitioning is determined by the
chosen code partition; data is transmitted between tiers
on-demand, with all of the data represented by a variable
used by a particular method being transmitted at once
as it becomes available. Only worker methods can be
split between different tiers, so all external code refer-
enced by the application is present on each tier. This al-
lows the compiler to avoid a potentially expensive deep-
dependency analysis of the referenced external code,
while keeping the dependency analysis of the target ap-
plication localized to DoWork. More details are given in
Appendix B.
Runtime support: The architectural principle that
guides ZØ’s tier-splitting algorithm can be summarized
as follows: whenever possible, delegate the data com-
munication and synchronization operations necessary to
support functionality to a runtime API. Each application
compiled by ZØ is linked to a runtime library that pro-
vides an API for communicating data and synchroniza-
tion between separate tiers. When the compiler performs
tier splitting, rather than inlining complex code to per-
form the tasks, simple calls to this API are inserted to
perform the “heavy lifting” of tier crossings at runtime.

6 Motivating Case Studies
This section presents six case studies. Appendix A
presents architectural diagrams and a detailed description
of the algorithm for each of these application. Similarly
to [17], we assume that the sensor readings devices can
are trusted and untampered with, and come signed by
their producer, but the machine or mobile phone (Client

tier) that performs the distance computation is not. Tech-
niques for building trust deeper into the platform are
complimentary to our work [25].
1) Walk for Charity with FitBit: Several programs ex-
ist for paying users for the amount of physical exercise
they perform, either directly in the form of rewards, or in-
directly by making charitable donations on their behalf,
such as earndit.com. This works by requiring users
to log their exercise habits using a FitBit or other sensor
device to measure the distance the user walks, runs, or
bikes, and send the logs to a centralized server.
Privacy: The user may not want to reveal their detailed
physical activities or exercise route to a relatively un-
trusted third party.
Integrity: The service is spending money on the basis of
distance derived from sensor logs. If the distance com-
putation can be subverted, the possibility for fraud arises,
analogously to pay as you drive insurance [5, 40, 43].
Solution: Keep all sensor readings local to the user’s
machine (laptop or mobile device), perform the distance
computation locally, on the client, send the result of
the distance computation to the centralized third-party
server. Use ZKPK to ensure that the distance compu-
tation is performed correctly. This approach is similar to
what has been advocated for smart metering [37].
2) Supervised Studies in Social Sciences: Many scien-
tific studies, especially in medical and social sciences,
require subjects to wear sensors and undergo protocols
that provide information about their physiological and
psychological state. A study that seeks to understand the
effect of common workplace events on worker’s stress
levels might require a participant to wear a galvanic skin
response sensor and a camera to detect face-to-face in-
teractions.
Privacy: Participants may have concerns about the use of
their physiological measurements or, most prominently,
the processing of images taken from their cameras.
Integrity: These studies typically involve payment given
to subjects. Subjects concerned about their privacy, or
those who simply do not want to wear intrusive sensor
devices, have an incentive to fake the data used in the
study.
Solution: Have all sensors associated with the study re-
port readings to the subject’s machine (desktop or mobile
phone). This machine performs aggregate computations

MSR-TR-2014-27 9 February 28, 2014

7 EXPERIMENTAL EVALUATION

relevant to the actual study on the readings, reporting re-
sults and discarding the raw sensor readings. ZKPK is
used to ensure that the readings are processed correctly.

3) Personalized Loyalty Cards: Many of today’s large
retailers such as Target, BestBuy, etc. use customer loy-
alty cards to encourage repeat visits. Typically, the cus-
tomer must enroll in a loyalty program, and receive a
card that can be applied to receive discounts in future
visits. Recently, certain retailers (e.g., Safeway) have be-
gun personalizing this process by using the customer’s
past purchase history (available because of the associ-
ation between checkout and loyalty card) to create dis-
counts available only to one particular customer. De-
pending on the retailer, these discounts can be sent to
the customer’s mobile phone, or applied automatically at
checkout.

Privacy: Many people are not comfortable with a retailer
tracking their purchases. This is most readily illustrated
by a recent scandal with Target discovering that a teenage
girl was pregnant before her parents did [15].

Integrity: Retailers offer discounts on the basis of past
purchase history. If a customer could fake a purchase
history, they might be able to obtain a discount for an
item of their choosing. Moreover, having a reproducible
strategy for “generating” discounts might create a seri-
ous problem for the retailer, similar to those experienced
by some retailers that were overly generous in offering
Groupons [34].

Solution: The solution is discussed in Section 2.1.

4) Crowd-sourced Traffic Statistics: Several mobile
applications such as Waze (waze.com) and Google Maps
provide traffic congestion information to end-users based
on the combined GPS readings of everyone using the
app.

Privacy: Users do not want to share their location with
the app’s servers, or the general public (in the case of a
distributed protocol).

Integrity: The app needs reliable GPS readings from
users to provide its core functionality. If users wish
to “game” the system by providing fake GPS readings
while receiving the end-product, the integrity of traffic
data is compromised for everyone.

Solution: Let the users keep their GPS readings local,
and take part in a distributed protocol to compute local
density information for transmission to the app’s central
server. Clients represent their location on a map using a
vector, represented as a set of secret shares, which can
be added to the other clients’ vector shares to derive the
overall traffic density map. When each client sends their
summed shares to the server, it can reconstruct the den-
sity map by combining the shares, as detailed in the ap-
pendix.

5) CNIDS: Collaborative intrusion detection (CNIDS)
has long been a goal of security practitioners [27]. In
the CNIDS scenario, multiple (distrustful) organizations
share the results of their network intrusion detection sen-
sors, to provide their peers with advanced warning about
possible threats. A practical approach involves sharing
IP blacklists: when an IP generates a valid NIDS alert on
one organization’s network, the IP is recorded and sent
to the other participating organizations.
Privacy: NIDS operate on highly sensitive data — raw
network traces. Organizations participating in CNIDS
do not want to share their traces with other organizations,
and in many cases, may be prohibited from doing so by
law or organizational policy.
Integrity: Given the privacy concern and the benefits of
participating, some organizations may want to freeload
by suppressing their own NIDS alerts. Additionally, if
an adversary manages to compromise a participating net-
work, it may choose to suppress or even generate false
alerts, which may result in a denial of service for the tar-
geted IP address.
Solution: Provide a ZKPK for the NIDS signature-
matching process, to prove that a claimed intrusion is
correct according to the signature. Note that this ap-
proach assumes that raw network data coming into the
NIDS has not been tampered with, but that the machine
performing the signature matching may not be trusted.
6) Slice: Organizing Shopping: Slice (slice.com) is a
service that takes as input a user’s past purchase history
from their email mailbox, and provides various services
using that data. One such service is product recommen-
dation — given everybody’s past purchase history, slice
can build classifiers that predict a likely “next” purchase.
Privacy: Handing one’s entire purchase history to a
profit-driven third party has obvious privacy implica-
tions. So does the troubling need to share one’s email
credentials with Slice at the moment.
Integrity: A user, particularly one concerned about pri-
vacy, might provide fake data to Slice in order to obtain
the useful classifier, which would pollute Slice’s data for
everyone and jeapordize Slice’s ability to profit from the
classifier.
Solution: Keep the user’s purchase history local, and
have the users take part in a distributed protocol in order
to produce the classifier for Slice. Use ZKPK to ensure
that no user is able to subvert the distributed classifier
computation.

7 Experimental Evaluation
All experiments were performed on a Win-
dows Server 2012 R2 machine with two 3.0 GHz 64-bit
cores with 8 GB of RAM. All reported timing measure-
ments correspond only to the zero-knowledge portion

MSR-TR-2014-27 10 February 28, 2014

7 EXPERIMENTAL EVALUATION

(1
)T

hr
ou

gh
pu

t
(a) Waze (server)

100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

Peers

#
U
p
d
a
te
s/

m
in
u
te

Hybrid
Pinocchio

ZQL

(b) Slice (server)

100 200 300 400 500 600 700 800 900 1,000
0

200

400

600

Peers

Q
u
e
ri
e
s/

m
in
u
te

Hybrid
Pinocchio

ZQL

(c) NIDS (server)

100 200 300 400 500 600 700 800 900 1,000
0

200

400

600

Trace Length (bytes)

A
le
rt
s/

m
in
u
te

Hybrid
Pinocchio

ZQL

(1
)L

at
en

cy

(d) Loyalty (client)

50 100 150 200 250 300 350 400 450 500

200

400

600

Purchases

L
a
te
n
cy

(s
)

Hybrid
Pinocchio

ZQL

(e) NIDS (client)

100 200 300 400 500 600 700 800 900 1,000

200

400

Trace Length (bytes)

L
a
te
n
cy

(s
)

Hybrid
Pinocchio

ZQL

(f) Waze (client)

100 200 300 400 500 600 700 800 900 1,000

2

4

6

8

10

Regions

L
a
te
n
cy

(s
)

Hybrid
Pinocchio

ZQL

(1
)P

ro
of

Si
ze

(g) Loyalty

50 100 150 200 250 300 350 400 450 500
0

1

2

3

·107

Purchases

P
ro

o
f
S
iz
e
(b

)

Hybrid
Pinocchio

ZQL

(h) Waze

100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

·106

Peers

P
ro

o
f
S
iz
e
(b

)

Hybrid
Pinocchio

ZQL

(i) NIDS

100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

·106

Trace Length (bytes)

P
ro

o
f
S
iz
e
(b

)

Hybrid
Pinocchio

ZQL

Figure 9: (1) Throughput, (2) latency, and (3) proof size for a characteristic sample of application functionality.

Scaling

ZØ scales to all application configurations. Others
may time out, or not even compile in fewer than 20
minutes, on some parameter settings: 100-byte traces
(NIDS), >100 peers (Slice), large automata (2000 edges)
(Loyalty).

Latency ZØ improves up to 40×, ≈ 5–13× on average

Proof
size

ZØ almost always less than 1 MB, at most 1.5 MB. ZQL
proofs can be tens or hundreds of MBs.

Global
tradeoffs

ZØ may be slower at one tier (2× slower for Waze server),
but savings at other tiers is always much greater (4×
faster for Waze clients)

Figure 10: Performance summary.

of the application’s execution time, as this is the only
portion that our compiler attempts to optimize.

The execution time of the ZK code is generally much
higher that of the rest of the application, so focusing on
these parts gives an accurate picture of the overall exe-
cution time. Each zero-knowledge proof generation and
verification task was terminated after ten minutes. Our
implementation uses 1,024-bit RSA keys for ZQL com-
putations. Integers in Pinocchio circuits were configured
to have 32-bits for comparison operations, and operate
over a 245-bit field.

Figure 10 summarizes the key performance results
from our experiments. We found that the ZØ-generated
code gave significant performance benefits both in terms
of computation time and proof size: up to 40× runtime

Pinocchio Speedup ZQL Speedup
Average Max Average Max

FitBit 6.4 6.6 4.5 4.7
Study 1.0 1.0 39.7 40.3
Loyalty 4.1 4.2 10.1 21.8
Waze 4.0 7.1 4.3 4.7
CNIDS 5.3 7.3 2.7 2.7
Slice 2.5 4.1 8.1 12.9
Average 4.5 13.0

Figure 11: Latency speedup factors for each application.

speedup, with most proofs below 1 MB (the largest be-
ing ≈ 1.9 MB). Furthermore, we saw that global opti-
mization is necessary to arrive at an ideal performance
profile: some applications perform noticeably worse at
one tier, but in each case the speedup at another tier was
always greater. For example, the code ZØ generated for
the Waze server ran ≈ 2× slower than Pinocchio’s on av-
erage, but the client tier experienced ≈ 4× reduced la-
tency.

Figure 11 shows the latency speedups across all appli-
cations. The average speedup delivered by ZØ is 4.5×
compared to Pinocchio and 13× compared to ZQL.

Results: Space limitations do not allow us to present our
measurements exhaustively. Instead, Figure 9 shows a
sample of the runtime characteristics for our target ap-
plications. Rather than giving raw execution times, the
results are broken into three categories: throughput, la-
tency, and proof size. These metrics were selected to

MSR-TR-2014-27 11 February 28, 2014

7 EXPERIMENTAL EVALUATION

more clearly depict the impact of zero-knowledge tech-
niques on each application.
Throughput: Figure 9(a)–(c) shows the results of three
experiments involving throughput. Figure 9(a) shows the
server’s throughput for the Waze application, which cor-
responds to the number location updates per minute the
server can handle as the number of users (n) increases.
Notice that Pinocchio outpaces both the hybrid and ZQL
compilations by about 2× on average. This is a result of
the global optimization engine: verification in Pinocchio
is very fast, whereas the time to construct a proof can be
quite slow: in this case, the proof construction phase was
up to 7× slower than the hybrid solution. This is criti-
cal, as proof construction takes place on the client where
resources are especially constrained for the application.
The discrepancy in resources is correctly used by ZØ to
optimize for a lighter client workload at the expense of
greater server overhead.

Figure 9(b) shows the number of random forest con-
struction queries per minute the Slice server is able to
handle, as the number of participating peers increases.
As with Waze the Pinocchio solution dominates the ZØ
solution at all data points because of the greater ex-
pensive of constructing proofs on the client, where the
Pinocchio solution is up to 4× slower than the ZØ solu-
tion.

Figure 9(c) shows the number of intrusion alerts per
minute the collaborative NIDS server can handle as the
number of bytes in the intrusion trace increases. Notice
that Pinocchio outperforms at a few small data points,
but fails to scale to any larger points. This is not be-
cause the server-side component is unable to scale, but
rather the client timed out at these settings. For the re-
maining points, the ZØ solution outperforms the others
by about 4×, and is the only solution that is able to scale
to even the modest intrusion trace length of 1 KB.
Latency: Figure 9(d)–(f) shows the results of three ex-
periments involving latency. Latency is always measured
in seconds, and has a uniform upper bound of 600 sec-
onds, which corresponds to our experimental timeout.
Figure 9(d) shows the latency of the client side of the
Loyalty application as the number of purchases used to
personalize discounts (n) increases. The ZØ solution far
outpaces both alternatives at all data points (4–22× im-
provement). These experiments were performed for an
automaton with about 75 edges. We found that when we
scaled the automaton to more realistic sizes (a few thou-
sand edges), the ZØ solution was the only one capable of
completing any number of purchases before timing out,
and the Pinocchio compiler timed out after 20 minutes.
For longer purchase histories, the ZØ solution completes
in just over 1.5 minutes, which is ample time if the ap-
plication is location-aware and begins proving a set of
discounts when the user enters the store.

Figure 9(e) shows the NIDS client’s latency to demon-
strate that a single intrusion is present in a trace. Pinoc-
chio times out at all points beyond 300 bytes, whereas
ZØ is about 2.7× faster than ZQL. Otherwise, we see that
as long as intrusions are spaced more than two-and-a-half
minutes (159 seconds) apart, the NIDS client has enough
time to build proofs for each intrusion trace.

Figure 9(f) shows the latency of the Waze client to send
traffic statistics for a single location query as the size of
the map (n) increases. First notice that the ZØ solution
is essentially constant, not varying by more than 1.5 sec-
onds between any two data points. The other solutions
require as much as 4–7× as long to process a query on
the client, which will limit the quality (i.e., recency) of
the statistics the server is able to gather over time. Sec-
ond, notice that at about n = 700, ZQL becomes more
performant than Pinocchio. This is because as the map
increases, the size of the lookup table needed to encode
the regions increases. Pinocchio is not able to perform
lookups as quickly as ZQL, so the portion of the com-
putation needed for lookups becomes more significant at
higher values of n. ZQL performs worse at lower val-
ues because most of the computation corresponds to the
multiplications needed to compute secret shares, which
it does not complete as quickly as Pinocchio.

Proof Size: Figure 9(g)–(i) shows the results of experi-
ments involving the size of the zero-knowledge proof in
various applications. We always measure in bytes, and
do not display a curve for the Pinocchio solutions, as it is
constant across input size and is usually too small to dis-
tinguish on the same scale as the ZQL and ZØ solutions.
Figure 9(g) shows the proof size for the Loyalty applica-
tion as the number of past purchases (n) varies. While
the Pinocchio solution of course dominates the others by
this metric (864 bytes), as we know from previous exper-
iments (Figure 9(d)) it does not scale in terms of Latency.
The ZØ proof size remains nearly constant, always un-
der 500 KB, whereas the ZQL solution requires at least
three megabytes (to perform the inequality checks at the
beginning), and finishes at about 100 megabytes. Note
that we obtained the point at n = 300 despite the time-
out, by letting the prover run for longer in this single
instance. Because the Loyalty application needs to com-
municate this proof wirelessly to a POS terminal, size is
crucial, and the ZØ solution offers the best overall char-
acteristics in terms of size and latency.

Figure 9(h) shows the proof size for the Waze appli-
cation as the number of peers varies. Again, Pinocchio
dominates (2 KB), but the tradeoff in latency for this
proof size is quite high (Figure 9(f)). The ZØ proof
size remains constant at around 5 KB because the only
processing done by ZQL is table lookups, which have
a constant proof size. The ZQL solution requires 20
megabytes for 2,500 clients, and 8 megabytes for 1,000

MSR-TR-2014-27 12 February 28, 2014

9 CONCLUSIONS

clients, making it untenable given that the clients need to
transmit proofs frequently over cellular networks.

Figure 9(i) shows the proof size for the NIDS appli-
cation as the intrusion trace length increases. The Pinoc-
chio proof is about 1 KB, but again the tradeoff in latency
makes this characteristic mostly irrelevant. The sizes for
the ZØ and ZQL solutions are both linear, with the ZØ
solution offering a savings of about 4× at all data points.
This is a significant savings, considering that false pos-
itives may be frequent, so the client may need to send
proofs to the server almost continuously throughout ser-
vice.

8 Related Work

Tier-Splitting and Language Methods: A number of
compilers exist that enable automated tier-splitting in
some form. In the context of web programming, Google
Web Toolkit (GWT) [21], Volta [26], Links [12], and
Hilda [45] are among the pioneering efforts. ZØ is clos-
est to Volta and GWT, allowing developers to supply a
single piece of code that is compiled into separate mod-
ules for the client and server. Unlike those projects, ZØ
uses cost models of execution time and data size to de-
rive an optimization problem whose solution represents
an ideal division of functionality between tiers.

Others have used tier splitting to provide security and
privacy guarantees. SWIFT [11] builds on the JIF [30]
language, incorporating security types for confidential-
ity and tier-splitting for web applications. To accomplish
this, information flow constraints are embodied in an in-
teger programming problem whose solution corresponds
to a valid (e.g., secure) placement of code onto tiers that
minimizes the number of messages that must be trans-
ferred. Unlike ZØ, SWIFT does not explicitly account
for data size and transfer time when looking for a split
that is likely to maximize performance.

Backes et al. [3] presented a compiler for distributed
authorization policies written in Evidential DKAL [7],
an authorization logic that supports signature-based
proofs. The use of zero-knowledge proofs allows princi-
pals to prove access rights based on sensitive data with-
out directly revealing its content. ZØ differs in its ap-
plicability: ZØ allows developers to use C# as part of
a larger .NET application, whereas this work translates
authorization logic formulas into cryptographic code.

Others have addressed the problem of untrusted client-
side computation in various contexts [22, 23, 42, 44]. A
similar notion of integrity was presented in Ripley [42],
which prevents client-side cheating in web applications
by efficiently replicating client-side computations on the
server. Unlike ZØ, Ripley’s mechanism does not pre-
serve privacy.

Zero-Knowledge Proofs: Zero-Knowledge proofs of
knowledge [6] have been extensively studied. Schemes
have been developed for various types of relations and
computations [8, 9, 20, 38]. Several projects have
sought to provide zero-knowledge compilers [2, 3, 17,
28, 33] that take a proof goal and produce executable
zero-knowledge code. The first set of zero-knowledge
compilers [2, 3, 28] required specifications of crypto-
graphic protocols [10], and so are difficult for non-
cryptographers to use. The second generation [17, 33]
are geared towards generating ZK code for general com-
putations expressed in restricted high-level languages.
Our work makes extensive use of these compilers to op-
timize zero-knowledge computation. There are a num-
ber of larger projects that incorporate zero-knowledge
proofs in order to manage integrity without sacrificing
privacy. Applications include privacy-preserving smart
metering [37], random forest and hidden Markov model
classification [13], and privacy-preserving automotive
toll charges [4].

9 Conclusions
This paper paves the way for using zero-knowledge tech-
niques for day-to-day programming. We have described
the design and implementation of ZØ, a distributing zero-
knowledge compiler which produces distributed applica-
tions that rely on ZKPK to provide simultaneous guaran-
tees for privacy and integrity. We build on recent devel-
opments in zero-knowledge cryptographic techniques,
exposing to the developer the ability to take advantage of
these advances without requiring domain-specific knowl-
edge or learning a new specialized language. Most of
the heavy lifting is done by the compiler, including cost
modeling to decide which zero-knowledge back-end to
use and how to split the application for optimal perfor-
mance, together with the actual code splitting.

Our cost-fitting models provide an excellent match
with the observed performance, with R2 scores at least
and .98. Our global application optimizer is fast, com-
pleting in under 3 seconds on all programs. Our man-
ual and experimental examination of program splits and
back-end choices proposed by ZØ confirms that they are
indeed optimal. Using six applications based on real-life
commercial products, we show how ZØ makes it viable
to use zero-knowledge technology. We observe perfor-
mance improvements of over 40×. Perhaps most impor-
tantly, ZØ allowed many of the applications to scale to
large data sizes with thousands of users while remain-
ing practical in terms of computation time and data size.
This means that applications which were not feasible us-
ing state-of-the-art zero-knowledge tools are now practi-
cal in realistic settings.

MSR-TR-2014-27 13 February 28, 2014

REFERENCES REFERENCES

References

[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ull-
man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 2007.

[2] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn,
A.-R. Sadeghi, and T. Schneider. A certifying
compiler for zero-knowledge proofs of knowledge
based on σ-protocols. In Proceedings of the Eu-
ropean Conference on Research in Computer Secu-
rity, 2010.

[3] M. Backes, M. Maffei, and K. Pecina. Automated
synthesis of privacy-preserving distributed appli-
cations. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2012.

[4] J. Balasch, A. Rial, C. Troncoso, B. Preneel,
I. Verbauwhede, and C. Geuens. Pretp: privacy-
preserving electronic toll pricing. In Proceedings
of the Usenix Security Conference, 2010.

[5] J. Balasch, A. Rial, C. Troncoso, B. Preneel,
I. Verbauwhede, and C. Geuens. Pretp: Privacy-
preserving electronic toll pricing. In Proceedings
of the Usenix Security Symposium, 2010.

[6] M. Bellare and O. Goldreich. On defining proofs
of knowledge. In Proceedings of the International
Cryptology Conference on Advances in Cryptology,
1993.

[7] A. Blass, Y. Gurevich, M. Moskal, and I. Neeman.
Evidential authorization*. In S. Nanz, editor, The
Future of Software Engineering. 2011.

[8] S. Brands. Rapid demonstration of linear relations
connected by boolean operators. In Proceedings of
the International Conference on Theory and Appli-
cation of Cryptographic Techniques, 1997.

[9] J. Camenisch, R. Chaabouni, and A. Shelat. Ef-
ficient protocols for set membership and range
proofs. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology,
2008.

[10] J. Camenisch and M. Stadler. Efficient group signa-
ture schemes for large groups. In Proceedings of the
International Cryptology Conference on Advances
in Cryptology, 1997.

[11] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure Web applications
via automatic partitioning. SIGOPS Operating Sys-
tems Review, 41(6), 2007.

[12] E. Cooper, S. Lindley, P. Wadler, and J. Yallop.
Links: Web programming without tiers. In Formal
Methods for Components and Objects. Springer
Berlin / Heidelberg, 2007.

[13] G. Danezis, M. Kohlweiss, B. Livshits, and A. Rial.
Private client-side profiling with random forests

and hidden Markov models. In Proceedings of
the International Conference on Privacy Enhanc-
ing Technologies, 2012.

[14] D. Davidson, M. Fredrikson, and B. Livshits.
MoRePriv: Mobile OS Support for Application
Personalization and Privacy (Tech Report). Techni-
cal Report MSR-TR-2012-50, Microsoft Research,
May 2012.

[15] C. Duhigg. How companies learn your secrets.
http://nyti.ms/SZryP4, Feb. 2012.

[16] T. Fechner and C. Kray. Attacking location privacy:
exploring human strategies. In Proceedings of the
Conference on Ubiquitous Computing, 2012.

[17] C. Fournet, M. Kohlweiss, and G. Danezis. Zql: A
compiler for privacy-preserving data processing. In
Usenix Security Symposium, 2013.

[18] M. Fredrikson and B. Livshits. RePriv: Re-
envisioning in-browser privacy. In IEEE Sympo-
sium on Security and Privacy, May 2011.

[19] F. D. Garcia, E. R. Verheul, and B. Jacobs. Cell-
based roadpricing. In Proceedings of the European
Conference on Public Key Infrastructures, Services,
and Applications, 2012.

[20] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct nizks with-
out pcps. In Proceedings of the IACR Eurocrypt
Conference, 2013.

[21] Google Web Toolkit. http://code.google.

com/webtoolkit.
[22] G. Hoglund and G. McGraw. Exploiting Online

Games: Cheating Massively Distributed Systems.
Addison-Wesley Professional, 2007.

[23] S. Jha, S. Katzenbeisser, and H. Veith. Enforcing
semantic integrity on untrusted clients in networked
virtual environments. In Proceedings of the IEEE
Symposium on Security and Privacy, 2007.

[24] F. Kerschbaum. Privacy-preserving computation
(position paper). http://www.fkerschbaum.

org/apf12.pdf, 2012.
[25] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Soft-

ware abstractions for trusted sensors. In Proceed-
ings of the International Conference on Mobile sys-
tems, Applications, and Services, 2012.

[26] D. Manolescu, B. Beckman, and B. Livshits. Volta:
Developing distributed applications by recompil-
ing. IEEE Softtware, 25(5):53–59, 2008.

[27] M. Marchetti, M. Messori, and M. Colajanni. Peer-
to-peer architecture for collaborative intrusion and
malware detection on a large scale. In Proceedings
of the International Conference on Information Se-
curity, 2009.

[28] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle,
and A. Lysyanskaya. Zkpdl: a language-based sys-
tem for efficient zero-knowledge proofs and elec-

MSR-TR-2014-27 14 February 28, 2014

REFERENCES REFERENCES

tronic cash. In Proceedings of the Usenix Confer-
ence on Security, 2010.

[29] Microsoft Research. Common compiler infras-
tructure. http://ccimetadata.codeplex.com,
2012.

[30] A. C. Myers and B. Liskov. A decentralized model
for information flow control. In SOSP, 1997.

[31] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. In Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy, 2008.

[32] A. Narayanan and V. Shmatikov. De-anonymizing
social networks. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 2009.

[33] B. Parno, C. Gentry, J. Howell, and M. Raykova.
Pinocchio: Nearly practical verifiable computation.
In Proceedings of the IEEE Symposium on Security
and Privacy, 2013.

[34] C. Pontoriero. Is groupon a raw deal for pub-
lishers? http://risnews.edgl.com/retail-

trends/Is-Groupon-a-Raw-Deal-for-

Retailers-73442, June 2011.
[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery. Numerical Recipes, 3rd edition: The
Art of Scientific Computing. Cambridge University
Press, 2007.

[36] J. Rattz and A. Freeman. Pro LINQ: Language In-
tegrated Query in C# 2010. Apress, 2010.

[37] A. Rial and G. Danezis. Privacy-preserving smart
metering. In Proceedings of the Workshop on Pri-
vacy in the Electronic Society, 2011.

[38] C.-P. Schnorr. Efficient signature generation by
smart cards. Journal of Cryptology, 4:161–174,
1991.

[39] V. Toubiana, A. Narayanan, D. Boneh, H. Nis-
senbaum, and S. Barocas. Adnostic: Privacy pre-
serving targeted advertising. In Proceedings of the
Network and Distributed System Security Sympo-
sium, Feb. 2010.

[40] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel.
PriPAYD: privacy friendly pay-as-you-drive insur-
ance. In P. Ning and T. Yu, editors, Proceedings
of the 2007 ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2007, pages 99–107. ACM,
2007.

[41] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel.
PriPAYD: privacy friendly pay-as-you-drive insur-
ance. In Proceedings of the ACM Workshop on Pri-
vacy in electronic society, WPES ’07, 2007.

[42] K. Vikram, A. Prateek, and B. Livshits. Ripley:
Automatically securing distributed Web applica-
tions through replicated execution. In Conference
on Computer and Communications Security, Oct.
2009.

[43] Wikipedia. Usage-based insurance.
http://en.wikipedia.org/wiki/Usage-

based_insurance, 2013.
[44] J. Yan. Security design in online games. In Pro-

ceedings of the Annual Computer Security Appli-
cations Conference, 1993.

[45] F. Yang, J. Shanmugasundaram, M. Riedewald,
and J. Gehrke. Hilda: A high-level language for
data-driven Web applications. In Proceedings of
the International Conference on Data Engineering,
2006.

MSR-TR-2014-27 15 February 28, 2014

A MOTIVATING CASE STUDIES A.1 Walk for Charity with FitBit

Appendix

In the appendix, we present more details for each of our
applications (Section A), show how a subset of C# is
translated to each zero-knowledge backend (Section B),
and give a further technical details on our global opti-
mization algorithm (Section C).

A Motivating Case Studies
This section presents six case studies. Below we present
a taxonomy of our applications along six dimensions that
relate to practical deployment concerns.

Trusted Hardware Does this application require
trusted hardware to establish integrity for the
inputs? The three applications that do not have this
requirement make a different trust assumption: the
source of the data is trusted by the verifier, but not
able to violate their privacy concerns.

Distributed Computation Does this application re-
quire some kind of peer-to-peer distributed compu-
tation? Both Slice and the Traffic Density applica-
tion require multiple provers to share intermediate
data using peer-to-peer communications.

Streaming Computation Does this application require
the ZQL portion of the implementation to contin-
uously accept and process input data, providing
the verifier with a continuous stream of results and
proofs?

Multiple ZQL Stages Does this application require
rounds of iterated ZQL computations, interleaved
with intermediate processing outside of ZQL? For
example, both Slice and Traffic require an initial
round of secret share generation (in ZQL), followed
by a peer-to-peer transmission of shares (not in
ZQL), followed by a round of share aggregation (in
ZQL). This property suggests the need for a unified
development and compilation framework, that takes
care of the transitions between these stages.

Parallelizable Is this application inherently paralleliz-
able? Two applications, Loyalty and CNIDS, are
marked as “maybe” because their primary function-
ality relies on some form of automaton evaluation.
This type of functionality may be parallelizable if
an extended form of lookup table is eventually sup-
ported by the ZQL compiler.

New Primitives Does this application require new
primitive support from the ZQL compiler? Three
applications require either map2, fold2, or both.

Application D
es

cr
ip

tio
n

Tr
us

te
d

ha
rd

w
ar

e

D
is

tr
ib

ut
ed

co
m

pu
ta

tio
n

St
re

am
in

g
co

m
pu

ta
tio

n

M
ul

tip
le

Z
Q

L
st

ag
es

Pa
ra

lle
liz

ab
le

co
m

pu
ta

tio
n

N
ew

pr
im

iti
ve

s

FitBit A.1 X 7 7 7 X 7

Studies A.2 X 7 X 7 X X
Loyalty A.3 7 7 7 7 ? X
Waze A.4 X X X X 7 X
CNIDS A.5 X 7 X 7 ? 7

Slice A.6 7 X 7 X X X

Figure 12: Case studies: a classification and a guide.

Figure 12 shows a classification of our case studies along
the dimensions outlined above. In each cell, X corre-
sponds to yes, 7 to no, and ? to maybe.

A.1 Walk for Charity with FitBit

Several programs exist for paying users for the amount
of exercise they perform, either directly in the form of
rewards, or indirectly by making charitable donations on
their behalf. This works by requiring users to log their
exercise habits using a FitBit or other sensor device (e.g.,
a GPS-enabled tracker) to measure the distance the user
walks, runs, or bikes, and send the logs to a centralized
server.

Privacy Concern: The user may not want to reveal their
exercise route to a relatively unknown/untrusted third
party.

Integrity Concern: The service is spending money on
the basis of distance derived from sensor logs. If the logs
can be tampered with, or the distance computation can
be subverted, the possibility for fraud arises.

Proposed Solution: Keep all sensor readings local to
the user’s desktop machine, perform the distance com-
putation locally on the desktop machine, send the result
of the distance computation to the centralized third-party
server. Use ZKPK to ensure that the distance computa-
tion is performed correctly. This approach is similar to
what has been advocated for smart metering [37]. Note
that we assume that the sensor readings are trusted, but
the (desktop) machine that performs the distance compu-
tation is not.

The algorithm proceeds as follows:

1. After each GPS reading, the user’s fitness device
sends an encrypted commitment to the Walk for
Charity server, as well as the user’s home computer.

MSR-TR-2014-27 16 February 28, 2014

A MOTIVATING CASE STUDIES A.3 Personalized Loyalty Cards

F(sensor data) à (exercise type, distance)
Zero-Knowledge Proof of

Knowledge

FitBit

Walk for Charity Server

User’s Home Computer

2. At the end of the day (or during some other down-
time), ZQL code running on the user’s computer
processes the GPS readings, and computes the to-
tal distance walked by the user.

3. The results of the ZQL computation, as well as their
correspond proof, are sent to the Walk for Charity
server for validation.

A.2 Supervised Studies

Many scientific studies, especially in medical and social
sciences, require subjects to wear sensors and undergo
protocols that provide information about their physio-
logical and psychological state. For example, a study
that seeks to understand the effect of common workplace
events on worker stress levels might require a partici-
pant to wear a galvanic skin response sensor, a camera
to detect face-to-face interactions, and to complete regu-
lar surveys that measure psychological state.
Privacy Concern: Participants may have concerns about
the use of their physiological measurements, survey re-
sponses, or, most prominently, the processing of images
taken from their cameras.
Integrity Concern: These studies typically involve pay-
ment given to subjects. Subjects concerned about their
privacy, or those who simply do not want to wear intru-
sive sensor devices and take the time to complete sur-
veys, have an incentive to fake the data used in the study.
Proposed Solution: Have all sensors associated with the
study report readings to the subject’s workstation. The
workstation takes these readings and performs the ag-
gregate computations relevant to the actual study, report-
ing the results and throwing the raw sensor readings out.
ZKPK is used to ensure that the sensor readings are pro-
cessed correctly. This assumes that the sensors attached
to the subject are trusted, but that the subject’s worksta-
tion is not.

The algorithm proceeds as follows:

1. At each time interval t, the sensors attached to the
subject’s body take a reading, and send it to the sub-

Camera

GSR Monitor

Data Collection Server

Encrypted Sensor Commitments

Zero-Knowledge Proof of
Knowledge

User’s Home Computer

Sensor Readings

f(sensor data) à (face dection, GSR aggregate)

(face detection, GSR aggregate, ZKPK)

ject’s workstation, as well as sending an encrypted
commitment to the data collection server.

2. The subject’s workstation performs aggregate com-
putations over the readings, and sends the results,
along with a zero-knowledge proof of correctness,
to the data collection server.

• The images are processed using a face de-
tection algorithm based on Principal Compo-
nents Analysis. A set of “eigenfaces” and
their corresponding eigenvalues are assumed
public input to the algorithm, and come pre-
trained from outside data. The algorithm sim-
ply projects the image from the camera into
“face space”, and computes its distance from
the average face computed from the training
set. The distance is returned from the compu-
tation.

• At the moment, the GSR readings are fed
through an identity map, as the primary threat
to privacy in this scenario is currently pre-
sumed to be the images taken from the sub-
ject’s camera. However, this aspect of the al-
gorithm could be changed to return the mean
or mode of some public number of samples.

3. The data collection server collects the proofs, and
verifies them against the encrypted commitments
sent by the sensors.

A.3 Personalized Loyalty Cards

Many of today’s large retailers such as Target, BestBuy,
etc. use customer loyalty cards to encourage repeat vis-
its. Typically, the customer must enroll in a loyalty pro-
gram, and receive a card that can be applied to receive
discounts in future visits. Recently, certain retailers (e.g.,
Safeway) have begun personalizing this process by using
the customer’s past purchase history (available because
of the association between checkout and loyalty card)
to create discounts available only to one particular cus-
tomer. Depending on the retailer, these discounts can be

MSR-TR-2014-27 17 February 28, 2014

A MOTIVATING CASE STUDIES A.4 Crowd-sourced Traffic Statistics

sent to the customer’s mobile phone, or applied automat-
ically at checkout.

Privacy Concern: Many people are not comfortable
with a retailer tracking their purchases. This is most
readily illustrated by a recent scandal with Target discov-
ering that a teenage girl was pregnant before her parents
did [15].

Integrity Concern: Retailers offer discounts completely
on the basis of past purchase history. If a customer were
able to fake a purchase history, they might be able to ob-
tain a discount for an item of their choosing. Moreover,
having a reproducible strategy for “generating” discounts
might create a serious problem for the retailed, similar
to those experienced by some retailers that were overly
generous in offering Groupon discounts [34].

Proposed Solution: The “loyalty app” on the customer’s
phone takes the place of the traditional card. At check-
out, the app uses a near-field communication sensor with
the register to receive a list of purchased items. This in-
formation is stored locally, and never sent to the store’s
servers. Personalization algorithms are applied to this
sensor data on the phone, and the results are discounts
that can be used at the next transaction. These discounts
are transmitted to the register at the time of purchase, and
ZKPK is used to demonstrate that the correct algorithms
were applied to the NFC sensor data received in previous
transactions. This assumes that the sensor readings are
trusted, but the mobile app is not.

The algorithm proceeds as follows:

1. Before checkout time (possibly during the phone’s
downtime, or on the user’s workstation), a ZQL
query is executed to associate the user’s previously
certified transactions (see Step 2) with a set of dis-
counts offered by the store. This is performed
by processing the user’s transaction history with a
finite-state transducer. This assumes that the user
gives his transaction history to the ZQL query in
a particular order, which is checked by the query.
The choice of using a finite-state transducer to as-
sociate discounts with transaction histories makes
this model general with respect to the store’s system
of discounting. Decision trees and arbitrary sets of
rules can also be encoded using this construct.

2. At checkout time, the user waves his smartphone
at the register. The register certifies the GUID of
each item purchased, and sends encrypted commit-
ments to the smartphone via NFC, as well as record-
ing them in a central database. The user’s phone
does not transmit any identifying information to the
register, so the store is unable to associate the pur-
chases with the user.

3. After receiving the certified transaction list for the
current purchases, the user’s smartphone sends the
result of the transducer from Step 1, and its corre-
sponding proof. The register can then provide the
discounts.

A.4 Crowd-sourced Traffic Statistics

There are several mobile applications that provide traffic
congestion information to end-users based on the com-
bined GPS readings of everyone using the app.

Privacy Concern: Users do not want to share their loca-
tion with the app’s servers, or the general public (in the
case of a distributed protocol).

Integrity Concern: The app needs reliable GPS read-
ings from users to provide its core functionality. If users
wish to “game” the system by providing fake GPS read-
ings (thus ensuring their privacy) while receiving the
end-product, a tragedy of the commons scenario results.

Proposed Solution: Let the users keep their GPS read-
ings local, and take part in a distributed protocol to com-
pute local density information for transmission to the
app’s central server. ZKPK is used to ensure the integrity
of the distributed protocol.

Traffic
Density
Statistic

ZKPK

Signed GPS
Commitments

User’s
Phone

Traffic Data
Collection Server

GPS

In more detail, this algorithm works as follows:

1. At regular intervals, the collection server sends a
request to each client for traffic density statistics.
Density statistics are represented by partitioning
the map into regions, and counting the number of
clients in each region.

2. On receiving a request, each client:

• Takes a GPS reading, and has it signed using
a trusted subsystem in the operating system.
An encrypted commitment of this reading is
forwarded to the collection server.

MSR-TR-2014-27 18 February 28, 2014

A MOTIVATING CASE STUDIES A.6 Slice: Organizing Shopping

• The client computes its region, and executes
a ZQL query to: (1) check that its computed
region number is correct; (2) compute a set of
linear secret shares of its region number. As-
suming R regions, the region numbers used by
the algorithm are:

R0,R1, . . . ,R(R−1)

• The client sends its secret shares to all other
clients, along with the proof that each share
was computed correctly.

• On receiving the other clients’ secret shares,
the client adds them all together, and forwards
the result, along with the proof that the shares
were added correctly, to the collection server.

3. On receiving all shares, the collection server inter-
polates to learn the sum computed by the clients.
The server than then compute the number of clients
in each region by converting it into its base-R repre-
sentation.

A.5 Collaborative Network Intrusion Detection

Collaborative intrusion detection (CNIDS) has been a
longtime goal of security practitioners. In the CNIDS
scenario, multiple (distrustful) organizations share the
results of their network intrusion detection sensors, in or-
der to provide their peers with advanced warning about
possible threats. The most practical way to do this is
to share IP blacklists — whenever an IP generates a
valid NIDS alert on one organization’s network, the IP
is recorded and sent to the other participating organiza-
tions.
Privacy Concern: NIDS operate on highly sensitive
data - raw network traces. Organizations participating
CNIDS do not want to share their traces with other or-
ganizations, and in many cases, may be prohibited from
doing so by law or organizational policy.
Integrity Concern: Given the privacy concern and the
benefits of participating, some organizations may want
to freeload by suppressing their own NIDS alerts. Addi-
tionally, if an adversary manages to compromise a partic-
ipating network, it may choose to suppress or even gen-
erate false alerts, which may result in a denial of service
for the targeted IP address.
Proposed Solution: Provide a ZKPK for the NIDS sig-
nature matching process, to show that network data is
being correctly processed and reported. This will need
to be done periodically (1) to demonstrate that alerts are
not being suppressed and (2) because of the streaming
nature of the application, and the consequent blow-up in
proof size. Note that this approach assumes that raw net-
work data coming into the NIDS is trusted, but that the
machine performing the signature matching may not be.

Internet Alert
Aggregator

Organization 1

NIDS
Traffic

Alert

No Alert

Organization 2

NIDS
Traffic

Alert

No Alert

IP Blacklist

IP Blacklist

Alert
Info

+ ZKPK

The algorithm works as follows:

1. As network events come in, the NIDS machine cer-
tifies them, and sends encrypted commitments to a
separate machine; for our purposes, call this ma-
chine the prover.

2. After a pre-defined number of network events have
transpired, or an alert has been raised, the prover
runs a ZQL query to traverse a finite state machine
representing the NIDS signature using the certified
network events. The query returns the IP address of
the network event that caused the alert (if an alert
resulted), or 0 otherwise. The prover sends the re-
sult of the traversal (the , as well as its ZK proof
and the encrypted network traffic commitments, to
the alert aggregator.

A.6 Slice: Organizing Shopping

Slice is a service that takes as input a user’s past pur-
chase history, and provides various services using that
data. One such service is product recommendation —
given everybody’s past purchase history, slice can build
classifiers that predict a likely “next” purchase.
Privacy Concern: Handing one’s entire purchase his-
tory to a profit-driven third party has obvious privacy im-
plications.
Integrity Concern: Slice is providing a service to users
who are willing to share their data, on the assumption
that the data will be used to create a classifier that is valu-
able to both the user and Slice. A user, particularly one
concerned about privacy, might provide fake data to Slice
in order to obtain the useful classifier, which amounts to
a type of fraud for the purposes of Slice.
Proposed Solution: Keep the user’s purchase history lo-
cal, and have the users take part in a distributed protocol
in order to produce the classifier for Slice. Use ZKPK
to ensure that no user is able to subvert the distributed
classifier computation. This approach assumes that the
purchase history data used by the distributed learning al-
gorithm is trusted. Although it is not immediately clear
how this end might be accomplished, one solution might

MSR-TR-2014-27 19 February 28, 2014

B TRANSLATING LINQ TO ZERO-KNOWLEDGE

be to have the retailer certify each purchase, and send a
commitment along with the user’s receipt. This would
achieve a similar level of trust to the current Slice imple-
mentation.

Receipts

Purchase
Prediction

Mechanism

slice.com

ZKPK

(1)

(2)

(2)

(3)

(4)

(4)

The approach produces a random forest classifier from
the collective purchase history of all Slice users, with the
goal of predicting whether a particular user is likely to
purchase a given item. Assuming that we have a sin-
gle, centralized database of purchase histories stored us-
ing the schema given above, a random forest would be
constructed by the following algorithm (inspired by the
relevant Wikipedia article):

For each tree, perform the following randomized com-
putation:

1. Let m be the number of input variables used to de-
termine the decision at each node of the tree.

2. Choose a random subset of n rows of the database
to be used for training the current tree.

3. For each node of the tree, randomly choose m vari-
ables on which to split. Calculate the best split
based on the MATT.

4. Value these variables take in the training set.

5. Grow the tree to a specified depth, and do not prune
it.

The classifier is built by combining all trees. Classifi-
cation is performed by traversing each tree for the given
sample, and taking the statistical mode of the label asso-
ciated with each traversed leaf node.

Our setting is slightly different: rather than having a
centralized dataset, each row is housed on a different
user’s device. The users do not wish to share their row
with Slice, so this algorithm must be run in a distributed
fashion by sending queries to each user corresponding to
the rows selected in step 2 of the algorithm given above.

On receiving a query, the user invokes ZQL functional-
ity (given below) to compute the correct answer based on
their purchase history, and sends the query result and its
zero-knowledge proof of correctness back to Slice. This
is given in the following algorithm:

Our setting is slightly different: rather than having a
centralized dataset, each row is housed on a different
user’s device. The users do not wish to share their row
with Slice, so this algorithm must be run in a distributed
fashion by sending queries to each user corresponding to
the rows selected in step 2 of the algorithm given above.
On receiving a query, the user invokes ZQL functional-
ity (given below) to compute the correct answer based on
their purchase history, and sends the query result and its
zero-knowledge proof of correctness back to Slice. This
is given in the following algorithm. For each tree, per-
form the following randomized computation:

1. Let m be the number of input variables used to de-
termine the decision at each node of the tree.

2. Choose a random subset of n users to train the cur-
rent tree. Label them u1, . . . , un.

3. For each node of the tree, randomly choose m vari-
ables on which to split. Label them v1, . . . , vm.

• Send a query q pertaining to each of the m
variables to u1, . . . , un. Construct q by:

q = l1 ≤ c1 ≤ u1 ∧ lm ≤ cm ≤ um ∧ . . .

where c j correspond to the amount spent in
category j, and item i is the class label that
we are trying to deduce.

• Each user constructs a set of linear secret
shares of his query result, and sends them to
the other u1, . . . , un (excluding himself), along
with the proof that the share is constructed ap-
propriately from the user’s inputs.

• The users add their shares independently, and
send the result (and its ZK proof) to Slice.

• Slice interpolates on the shares returned by the
users, to obtain the number of users that match
the query q.

4. Based on the query results given by u1, . . . , un, cal-
culate the best split, and construct the new node.

5. Grow the tree to a specified depth, and do not prune
it.

The classifier is built by combining all trees. Classifi-
cation is performed by traversing each tree for the given
sample, and taking the statistical mode of the label asso-
ciated with each traversed leaf node.

MSR-TR-2014-27 20 February 28, 2014

B TRANSLATING LINQ TO ZERO-KNOWLEDGE B.1 Pinocchio

Pinocchio

Linq to ZQL Rewriter

List Size Solver
List Type

Generator
Expression
Rewriter

IL
Code IL Lifter

Query
Wrapper

ZQL

Figure 13: LINQ→ translation process.

B Translating LINQ to Zero-Knowledge
In order to satisfy privacy and integrity constraints, our
compiler translates some statements containing LinqExpr

components in the worker methods into code that gen-
erates zero-knowledge proofs of knowledge. To accom-
plish this, ZØ relies on two zero-knowledge back-ends:
ZQL [17] and Pinocchio [33]. Each back-end is itself a
compiler, accepting as input an expression of a compu-
tation, and producing executable code to produce a zero-
knowledge proof of the computation for a given set of
inputs. As such, each back-end supports its own expres-
sion language with significantly different characteristics.
The challenge addressed in this section is the translation
of the common subset of LINQ supported by ZØ into the
expression languages of these back-ends.

Figure 13 gives an overview of our back-end compi-
lation process for ZQL and Pinocchio. The details differ
significantly for each back-end, converging only on the
first and last steps which correspond to lifting low-level
intermediate language code into a higher representation
and inserting I/O marshaling instructions before and after
the compiled object code. This divergence of functional-
ity is necessary given the differences between the two ex-
pression languages: ZQL’s expression language is essen-
tially a small subset of pure standard ML, whereas Pinoc-
chio’s is a subset of C with restrictions on data types and
loop bounds. Because the subset of LINQ functions sup-
ported by ZØ corresponds to a small core of functional
expressions, translating from ZØ to Pinocchio is much
more involved than to ZQL.

B.1 Pinocchio

The structure of C code is substantially different from the
types of Linq queries allowed by ZØ, and Pinocchio’s ad-
ditional restrictions make translation more complicated
yet. First, all list sizes used in the Pinocchio expres-
sion must be statically-declared, and any operation over
a list requires a static value to bound the corresponding
loop statement. The LINQ commands in ZØ do not have
these restrictions, so we must find a way to derive the
needed information. Second, many expression forms in
ZØ’s LINQ commands have no corresponding expres-
sion form in C: they must be converted into statements
whose side-effects are available as sub-expressions to en-
closing expressions.

To perform translation to Pinocchio, ZØ follows a
three-step process. First, static values for the size of each
identifier that refers to a list value are derived using a
constraint solver. The basis for this computation is a set
of annotations provided by the developer, which indicate
upper bounds on the sizes of certain input lists.
List Size Resolution: As previously discussed, Pinoc-
chio requires static sizes for all lists and list operations,
so our translation procedure requires a mapping from
identifiers (for those that refer to list objects) to size con-
stants. To produce such a mapping, we use a constraint
resolution procedure over a set of bounding constraints
generated by traversing the source expression. The rules
for generating the constraints are given in Figure 14.
Each rule is of the form Γ, Syntactic Element ⇒ Γ′,
where Γ and Γ′ are sets of constraints. The constraints
for each LINQ command are straightforward. The out-
come of Select, Aggregate, and Zip operations has the same
size as the input variable(s). The outcome of a First state-
ment has the size of the elements contained in the input
list.

The rules are invoked by a procedure that traverses
each node of the program’s AST, and performs syntac-
tic matching on the entity represented by each node and
the Syntactic Element of each rule. As the traversal pro-
ceeds, a list of constraints is maintained, and updated
when rules match AST nodes. When the AST traversal
completes, he set of constraints generated is passed to the
Z3 SMT solver for resolution. If the constraints are sat-
isfiable, Z3 will produce a model, which associates con-
straint variables to integers that satisfy the constraints.
This model is used to derive the needed mapping be-
tween identifiers and list sizes.
Type Generation and Function Isolation: Pinocchio
requires static sizes on all arrays and loop bounds. To
accomplish this, ZØ creates a new struct type for each
list with a distinct base type and size in the original pro-
gram. Each new type has two fields: a static array and a
constant defining the size.

Once types for each identifier are established, each
sub-expression in the source statement is converted to a
function body. To see the need for this step, consider the
statement x.Select(el → el.Select(. . .)). C has no ex-
pression form for the functionality needed by the Select

command, so both expressions must be converted into
loop statements. Rather than placing the loop statements
in the same method body and carefully managing side
effects and sequencing with other sub-expressions, we
isolate the emitted code for the inner Select in a separate
function, and emit a call to the new function in its place
in the context of the outer Select expression.

The statements generated for each LINQ command are
straightforward translations of their defined behavior into
basic C; in general, the input loop is iterated over, and the

MSR-TR-2014-27 21 February 28, 2014

B TRANSLATING LINQ TO ZERO-KNOWLEDGE B.1 Pinocchio

con(expr) =

{id.elt} when expr is id.First(. . .)
{id1, id2} when expr is id1.Zip(id2, . . .)
{id} when expr is id.Aggregate(. . .)
{id} when expr is id.Select(. . .)
{id.n} when expr is id.Fld(n)

con(id) = {id}

C-FieldDef1
ϕ ≤ id = x ∧ id.elt = 1

Γ, [MaximumInputSize(x)] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}

C-FieldDef2

ϕ =
id ≤ x ∧ id.elt ≤ n1 ∧ id.elt.elt
≤ n2 ∧ · · · ∧ id.(elt)k ≤ nk ∧ id.eltk+1 = 1

Γ, [MaximumInputSize(x, {n1, . . . , nk})] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}

C-Method
id(id1, . . . , idn) is a call site

Γ,Type id(id f
1 , . . . , id f

n) { . . . } ⇒ Γ ∪ {id
f
1 ≥ id1, . . . , id

f
n ≥ idn}

C-New
Vi = con(expri)

Γ, new id(expr1, . . . , exprn)⇒ Γ ∪
⋃

1≤i≤n{
∧

v∈Vi id.i = v}

C-Basic
Command ∈ {Select,First}

Γ, id1.Command(id2 → · · ·)⇒ Γ ∪ {id1.elt = id2}
C-Aggregate

Γ, id1.Aggregate((id2, id3)→ · · ·)⇒ Γ ∪ {id1.elt = id3}

C-Zip
Γ, id1.Zip(id2, (id3, id4)→ · · ·)⇒ Γ ∪ {id1.elt = id3 ∧ id2.elt = id4}

C-Assign
V = con(expr)

Γ, id = expr ⇒ Γ ∪ {
∧

v∈V id = v}
Figure 14: List size constraint generation rules. Γ is a set of constraints.

lambda passed to the command is invoked over each ele-
ment. Field lookups, new object construction, and func-
tion calls are rewritten to their C equivalents.
Pinocchio Example: Consider the example starting on
line 33 of Figure 1. This command traverses the “dis-
count” automata using a list of past purchases. In order
to compile this to Pinocchio, we must first solve a set
of constraints generated by a traversal of its syntax, as
depicted in Figure 14. These constraints relevant to this
command are given as:

1. history ≤ NPurchases

2. items.elt ≤ NItems

3. automata ≤ NEdges

4. transducer ≤ NStates

5. purch_state ≤ history.elt.3

Suppose that we instantiate

NPurchases = 500

NItems = 10, 000

NEdges = 100

NStates = 50

The solver library solves these constraints in less than
one second, and produces a model that allows us to re-
solve static sizes for all of the lists we need to perform
the LINQ commands: Select, Aggregate, and First:

{history = 500, items = 10000,
automata = 100, transducer = 50, purch_state = 1}

Using these sizes, ZØ generates the necessary input types
to emit the LINQ commands. For the sake of brevity, we
show only one such type used to represent the variable
automata, as they all share a similar form:

1 struct Triple100 { Triple Enumerable [100]; }

ZØ then begins emitting new functions for each sub-
expression in the source statement. For clarity, we
will omit some function bodies by in-lining simple sub-
expressions into certain function bodies; in reality, ZØ
would emit a new function for every sub-expression. We
begin with the lambda expression passed to the First com-
mand:
1 #define Boolean int
2 Boolean firstPredicate(Triple row , Int32 state ,
3 Int32 purch) {
4 return row._1 == state && row._2 == purch;
5 }

This definition is used to construct the First command in a
separate function: The definition First is used to gener-

1 Pair First(Triple100 automata , Int32 state ,
2 Int32 purch) {
3 int it;
4 for(it = 0; it < Triple100Length; i++) {
5 if(firstPredicate(
6 automata.Enumerable[it], state , purch))
7 return automata.Enumerable[it];
8 }
9 // Semantics is undefined when

10 // Find cannot find the right element
11 return automata.Enumerable [0];
12 }

ate the function for the Aggregate command that traverses
the automata: The translation from LINQ to C for this

1 Int32 Aggregate(Int32500 history ,
2 Triple100 automata) {
3 int it, int0 = 0;
4 for(it = 0; it < Pair10000Length; it++) {
5 int0 = First(automata ,
6 int0 ,
7 history.Enumerable[it]);
8 }
9 return int0;

10 }

command is straightforward: to aggregate a list, create

MSR-TR-2014-27 22 February 28, 2014

C GLOBAL OPTIMIZATION DETAILS

an accumulator (int0 in this case), and fold the aggre-
gator function over each element in the accumulator in a
loop that covers the entire list. Notice that in the actual
code emitted by ZØ, this definition requires a separate
function for each new object that is constructed; here,
we in-line these functions into Aggregate to keep this
discussion relatively brief. The entire query can be in-
voked by calling the resulting Pinocchio program with
the relevant inputs to the original program, history and
automata.

B.2 ZQL

Recall that we only attempt to convert LinqStmt statements
into zero-knowledge, so there are four primary func-
tions to convert, in addition to a few additional expres-
sion forms. By no coincidence, the four primary LINQ
functions correspond closely to the operations supported
by ZQL. Figure 15 gives a set of rewrite rules that can
be used to translate a LinqExpr to ZQL’s expression lan-
guage. Select, Aggregate, Zip, and First calls are translated
to map, fold, map2, and find expressions. Lambda defini-
tions and functions calls are translated compositionally,
by first translating sub-expressions and then building a
new construct in the target language. Object creation us-
ing new is translated into tuple construction. Recall that
user-defined types in a ZØ program must expose a single
constructor that assigns all fields of the type; field names
are translated into a tuple order using the constructor sig-
nature. Similarly, field accesses using fld are translated
into a let binding that returns the appropriate tuple com-
ponent; the translation consults the target identifier’s type
constructor to deduce the number of fields in the type.

Example: To illustrate the process of converting a ZØ
LINQ statement to ZQL with rewrite rules, consider the
example given in Figure 1. As previously discussed, the
statement beginning on line 33 traverses an automata us-
ing the user’s shopping history to arrive at a discount.
Applying the rules from Figure 13, we start with T-
Aggregate. The precondition of this rule states that both
the initial accumulator and the lambda portions of our
LINQ command must have valid ZQL translations. The
initial accumulator is the constant 0, which is already
valid ZQL.

Moving on to the lambda subexpression, we need to
derive a translation for the expression body, which is
another LINQ expression that performs a search using
First over a list of triples. Descending recursively, we
see that to translate the First command, we need to find
a valid ZQL translation for the find predicate passed to
the command. This is mostly straightforward, but re-
quires an application of T-Fld to de-compose the Triple
comprising each list element into its constituent Int32
values. The only precondition of this translation is that
the type of Triple has k fields for some k; this is true for

k = 3. So, we can rewrite:

trans.fld〈int〉((1))⇒ (let (_1, _2, _3) = trans in _1)

We can do the same for trans.fld〈int〉(2). The field
accesses are used in a conjunctive equality test, which
is translated compositionally using T-Op. With these
rewrites, the final result for the find predicate is:
fun(trans)→

(let(_1, _, _) = transin(_1 = state))
@&(let(_, _2, _) = transin(_2 = purch))

Plugging this expression back into T-Aggregate, we ar-
rive at the following for our final rewrite:

fold
(fun(state, purch)→
find(fun(trans)→
(let(_1, _, _) = transin(_1 = state))
@&(let(_, _2, _) = transin(_2 = purch))

automata

This functionality is invoked on the input history; the
expression is incorporated into an outer query function,
which is called on LINQ to ZQL translations of each of
the region’s inputs.

C Global Optimization Details
The rules for performing global optimization are given
in Figure 16. The top portion of Figure 16 specifies the
inference rules needed to generate the privacy and func-
tionality constraints, and the bottom portion the objec-
tive function used to characterize the suitability of a so-
lution to the constraints. The rules are applied as part of
a traversal of the program’s abstract syntax tree. Each in-
ference rule either updates the set of constraints collected
for a program, or a context Γ; they are of the form:

Antecedent
Γ ` C,Pattern⇒ C′

Antecedent
Γ ` C,Pattern⇒ Γ′

Γ is the context of the analysis, and tracks which method
the traversal is currently in, as well as whether the traver-
sal is in a zero-knowledge region and which external
methods have an affinity to a particular tier. C is a
set of constraints. Pattern is an AST pattern, such as
v = f (v1, . . .) to match an assignment. Antecedent is a
pre-condition for using a rule: whenever Antecedent is
true, then either the set of constraints C is updated to a
new set C′, or Γ is updated to a new context Γ′, according
to the specifics of the rule.

The rules in Figure 16 use a variable pv for each pro-
gram variable v to indicate the privacy level of v; lev-
els correspond to integers that are mapped to tiers by
the function φ. φ maps the tier Any (corresponding to
the constraint that a variable may appear on any tier) to
the value 0, and all other locations to positive integers.
Similarly, a variable p f is created to track the execution
location of each worker method f . The constraints also
create a variable c f1, f2 for each pair of worker methods

MSR-TR-2014-27 23 February 28, 2014

C GLOBAL OPTIMIZATION DETAILS

T-Select
lambda⇒ lambdazql

Id.Select(lambda)⇒ (map (lambdazql) Id)
T-Aggregate

lambda⇒ lambdazql expr ⇒ exprzql

Id.Aggregate(expr, lambda)⇒ (fold (lambdazql) exprzql Id)

T-Zip
lambda⇒ lambdazql

Id1.Zip(Id2, lambda)⇒ (map2 (lambdazql) Id1 Id2)
T-First

lambda⇒ lambdazql

Id.First(lambda)⇒ (findt (lambdazql) Id)

T-Lambda
expr ⇒ exprzql

(Id1, Id2, . . .) → expr ⇒ fun (Id1, Id2, . . .) → exprzql
T-Call

expri ⇒ expri
zql

Id(expr1, . . . , exprn)⇒ Id(expr1
zql, . . . , exprn

zql)

T-Fld
typeof(Id) has k fields

Id.fld(n)⇒ (let(Id1, . . . , Idn, . . . , Idk) = Id in Idn)
T-NewNamed

expri ⇒ expri
zql

new Id(expr1, . . . , exprn)⇒ (expr1
zql, . . . , exprn

zql)

T-NewAnon
expri ⇒ expri

zql

new {Id1 = expr1, . . . , Id1 = exprn} ⇒ (expr1
zql, . . . , exprn

zql)

Figure 15: Transformation from ZØ LINQ to ZQL expressions.

f1 and f2. c f1, f2 takes the value 0, except whenever there
is a tier crossing between f1 and f2, meaning f2 uses a
value computed by f1, and f1 and f2 do not reside on
the same tier, in which case it takes the value 1. Finally,
each program variable v is associated with two additional
constraint variables zv and qv, corresponding to whether
the zero-knowledge proof of v is computed by ZQL (in
which case zv = 1) or Pinocchio (in which case qv = 1).
zv and qv are mutually exclusive, i.e. zv = 1 ⊕ qv = 1,
as the proof of each variable is computed by at most one
zero-knowledge engine. If v is not defined inside of a
zero-knowledge region, then zv = qv = 0.

The rules propagate privacy concerns among the vari-
ables in a straightforward fashion: for an assignment
v = f (v1, . . . , vn) or v = v1 op v2 op . . . op vn, the con-
straints are updated to reflect that either pv = pvi or
pvi = φ(Any), for all vi on the right-hand side of the
assignment. Intuitively, either v has the same privacy
requirements as vi, or vi does not have any privacy re-
quirements at all. Similarly, whenever a variable v is ref-
erenced in a worker method f , either f must be placed at
the tier matching the privacy requirement of v, or v must
have no privacy requirement.

Whenever v is assigned in a zero-knowledge region,
we constrain its privacy requirement to Any, effectively
declassifying v. Whenever v is the target of an assign-
ment whose right-hand side invokes external code, we
assume that v must remain private to the tier on which
its host worker method executes. This is a conserva-
tive over-approximation, based on the possibility that
external code can perform arbitrary actions outside the
purview of ZØ’s analysis capabilities, such as leaking
sensitive files or memory into return values.

The objective function in Figure 16 can be understood
in two parts. The first part corresponds to the communi-
cation cost of any tier crossings in the tier partition: for
each pair of worker methods fi, f j, the crossing variable
c fi, f j is multiplied by the cost of sending data between

the tiers ComCost(p fi , p f j) and the size of the proofs that
need to be communicated between the functions. The
proof size is computed using cost models, as described
in Section 4. Recall that c fi, f j is zero except in solutions
where fi and f j are placed on different tiers.

The second part of the objective function corresponds
to the cost of building and verifying zero-knowledge
proofs using the engines selected by the current solu-
tion. For each variable, there is a term corresponding
to its proof generation and verification cost for each en-
gine, multiplied by the cost of computation at the corre-
sponding tier. As with the tier crossing variables c f1, f2 , zv

and pv are zero except when the solution selects ZQL or
Pinocchio for the variable v, respectively, so each term
will only contribute to the final cost when the solution
selects a particular zero-knowledge engine.

MSR-TR-2014-27 24 February 28, 2014

C GLOBAL OPTIMIZATION DETAILS

Γ ` C, [Private(Loc)] Type v⇒ C ← C ∪ pv = φ(Loc)

Γ ` C, Type MethodName (...){...} ⇒ Γ← Γ[CurMethod 7→ MethodName]
Γ(ZKRegion) = False

Γ ` C, v1 = v2 ⇒ C ← C ∪ pv1 = pv2

Γ ` C, ZKBegin()⇒ Γ← Γ[ZKRegion 7→ True] Γ ` C, ZKEnd()⇒ Γ← Γ[ZKRegion 7→ False]

Γ(ZKRegion) = False f is a worker method vi is defined by return value of fi

Γ ` C, v = f (v1, . . . , vn)⇒ C ← C ∪
(∧

1≤i≤n(pvi = p f ∨ pvi = φ(Any)) ∧ (p f , p fi =⇒ c fi , f = 1)
)

Γ(ZKRegion) = False f is an external method Γ(f .ExecutionReq) = lexec Γ(CurMethod) = f

Γ ` C, v = f (v1, . . . , vn)⇒ C ← C ∪ pv = p f ∧ p f = lexec

Γ(ZKRegion) = False

Γ ` C, v = new f (v1, . . . , vn)⇒ C ← C ∪
∧

1≤i≤n pv = pvi ∨ pvi = φ(Any)

Γ(ZKRegion) = True

Γ ` C, v = ?⇒ C ← C ∪ pv = φ(Any) ∧ zv ∈ {0, 1} ∧ qv ∈ {0, 1} ∧ zv = 1 ⊕ qv = 1
Γ(ZKRegion) = False

Γ ` C, v = ?⇒ C ← C ∪ ∧zv = 0 ∧ qv = 0

Γ(CurMethod) = f

Γ ` C, v is used⇒ C ← C ∪ pv = φ(Any) ∨ p f = pv

Minimize
∑

fi , f j∈Methods

c fi , f j ComCost(p fi , p f j)DataSize(fi)

+
∑

v∈Variables

zv(ZQLProver(v)TierComputeCost(v,Prover) + ZQLVerify(v)TierComputeCost(v,Verifier))

+
∑

v∈Variables

zv(PinocchioProver(v)TierComputeCost(v,Prover) + PinocchioVerify(v)TierComputeCost(v,Verifier))

Figure 16: Global optimization constraint generation and objective rules.

MSR-TR-2014-27 25 February 28, 2014

